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1 Introduction

Ultrasonic diffraction tomography (UDT) [1-3] can be viewed as a generalization of X-ray
tomography where X-rays have been replaced with an acoustical wavefield. Because UDT
is non-invasive, free of radiation hazard, and reproducible, it is potentially an excellent tool
for imaging of breast cancer [4,5]. While UDT promises several potentially important advan-
tages over conventional ultrasonic imaging and has found important uses in a wide variety of
engineering and scientific disciplines, its application to imaging of breast cancer still remains
largely unexplored. The broad objective of the proposed project is to investigate, develop, and
evaluate computationally efficient [6] and statistically optimal [7-9] algorithms for accurate
image reconstruction in three-dimensional (3D) UDT imaging of the breast cancer. In the last
year, our research on this project has, we believe, been successful and productive. The report
below summarizes our research activities and results on the project to date.

2 Body

Our research activities on the project to date can be grouped naturally into 4 categories. The
first was the investigation of efficient linear algorithms for image reconstruction from 3D data
and from minimum scan data. The second was the development of efficient nonlinear algo-
rithms for 2D and 3D image reconstructions. The third was the applications of the developed
algorithms to simulated and experimental data for evaluation of their performance. Finally,
as a by product, we developed short-scan reconstruction algorithms for reflection-mode ultra-
sound tomography that can also be a potentially important modality for imaging of the breast
cancer.

2.1 Development of efficient linear reconstruction algorithms

In breast imaging applications of ultrasound, the first-order Born or Rytov approximations
are typically not valid, and consequently, a linearized Helmholtz equation may not accu-
rately describe the relationship between the measured scattered wavefield and the scattering
tissue [10-18]. However, many nonlinear reconstruction algorithms that account for multiple-
scattering effects, including the ones we discuss below [19], involve the recursive application
of a linear reconstruction algorithm (that assumes the validity of the first-order Born or Rytov
approximation.) It is therefore very important to develop computational efficient and numer-
ically robust linear reconstruction algorithms for DT. Below, we discuss our results on this
salient topic.

2.1.1 Development of 3D efficient reconstruction algorithms

In 2D DT, the filtered backpropagation (FBPP) algorithm is [1] widely used for image recon-
struction and is generally regarded as being more accurate than direct Fourier reconstruction
approaches. However, objects such as the female breast are inherently three-dimensional and
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must be reconstructed using fully 3D reconstruction algorithms in order to avoid significant
artifacts and a loss of quantitative accuracy. We developed and evaluated novel reconstruc-
tion algorithms for 3D DT, referred to as the esstimation-combination (E-C) reconstruction
algorithms, that effectively solve the (fully) 3D DT reconstruction problem by performing a
series of 2D Radon transform inversions [20]. This greatly reduces the large computational
load that is generally required by any other 3D DT reconstruction technique such as the 3D
FBPP algorithm. This is vitally important for the development of computationally tractable
3D nonlinear algorithms that involve the recursive application of a 3D linear reconstruction
algorithm. We also demonstrated that, in the presence of data noise, there is redundant infor-
mation contained in the 3D DT data function that can be exploited by the 3D E-C algorithms
to reduce the variance of the reconstructed image [19].

2.1.2 Development of minimum-scan reconstruction algorithms

In many applications of tomographic imaging it is desirable to minimize the angular range
over which the measurement data are acquired. This reduces the time necessary to collect
the measurement data, which can reduce artifacts due to patient motion. Furthermore, in cer-
tain situations it may not be experimentally possible to collect data over a complete 27 range.
We demonstrated that a minimal-scan data set acquired using view angles only in [0, ¢min]
contains all the information necessary to reconstruct exactly a 2D scattering object function,
where 7 < ¢ < 37m/2 is a function of the measurement geometry. Based on this ob-
servation, we developed, investigated, and numerically implemented minimal-scan FBPP and
E-C reconstruction algorithms for 2D DT that can exactly reconstruct the scattering object
function from the minimal scan data set. Prior to our work, all reconstruction algorithms
for DT required a full 2 worth of angular measurements to reconstruct an accurate image.
We numerically demonstrated that the minimal-scan E-C reconstruction algorithms were less
susceptible to the effects of data noise and inconsistencies than were the minimal-scan FBPP
reconstruction algorithms. We also generalized this work to 2D DT using the fan-beam geom-
etry and revealed a novel relationship between the maximum scanning angle and achievable
image resolution. This work may provide useful insights into the development of minimum-
scan reconstruction algorithms for 3D DT that can be used for breast imaging [21].

2.2 Development of efficient nonlinear reconstruction algorithms

In certain situations of the breast imaging, the first-order Born or Rytov approximations may
not be valid. Consequently, a linearized Helmholtz equation may not accurately describe the
relationship between the measured scattered wavefield and the scattering object, and nonlinear
algorithms are necessary for obtaining accurate images. We proposed to develop efficient
nonlinear reconstruction algorithms for UDT.




2.2.1 Development of 2D efficient nonlinear reconstruction algorithms

Previously we described our development and investigation of E-C reconstruction algorithms
for linear DT. We have generalized these algorithms to the case where a forward scattering
model includes multiple-scattering effects. Two forward scattering models were utilized that
captured higher-order terms in the Born or Rytov perturbation series, and are therefore po-
tentially useful for modeling ultrasound wave propagation in breast tissue [22,23]. For each
of the two forward scattering models, we developed families of nonlinear E-C reconstruction
algorithms to solve the inverse problem [19]. The nonlinear E-C reconstruction algorithms
operate by relating, in 2D Fourier space of the Radon transform, the n-th order perturbation
of the measured data function to the n-th order perturbation of the scattering object function.
The algorithms are recursive in the sense that calculation of the n-th order perturbation of
the object function requires knowledge of the (n-1)-th order perturbation. The computational
efficiency of the E-C algorithms is therefore very relevant to this problem. We also identi-
fied consistency conditions for the nonlinear imaging models employed by the two families of
nonlinear E-C algorithms. For both imaging models, the consistency conditions for linear DT
were contained as special cases.

2.2.2 Development of 3D efficient nonlinear reconstruction algorithms

Although we have been largely successful in the theoretical development of computationally
efficient nonlinear algorithms for 2D UDT, the applicability of such algorithms can be re-
strictive because the multi-scattering effect in the breast imaging is generally 3D in nature.
Therefore, we have also investigated 3D nonlinear reconstruction algorithms. Our strategy for
the development of 3D nonlinear reconstruction algorithms is similar to that for 2D nonlinear
reconstruction discussed above. Specifically, we proposed to investigate the two mentioned
forward models in 3D and to use the perturbation series for the inversion. The inversion of
the solution at each perturbative order will be accomplished through the use of our devel-
oped linear 3D E-C algorithms for improving the computational efficiency. We are currently
continuing the development of such 3D perturbative nonlinear algorithms.

2.3 Implementation and evaluation of the proposed algbrithms

We have implemented the proposed linear algorithms and nonlinear algorithms and evaluated
them by use of computer simulated data and real data.

2.3.1 Implementation and evaluation of linear reconstruction algdrithms

We have implemented the linear E-C reconstruction algorithms and investigated their noise
properties by using a large number of computer simulated data sets. Through our simula-
tion studies, we have demonstrated that it is possible to achieve a bias-free reduction of the
statistical variation in the reconstructed object function by utilizing complementary statistical




information inherent in the scattered data. (The use of an explicit smoothing operation gen-
erally introduces bias in the reconstructed scattering object function.) We have quantitatively
demonstrated that the E-C algorithms are less susceptible to data noise and other finite sam-
pling effects than are the corresponding FBPP algorithms. This result is con$istent with the
observation that the FBPP algorithms involve more complicated numerical operations (e.g.,
backpropagation) than do the E-C algorithms, which may amplify the propagation of noise
and errors into the reconstructed image. Using simulated strongly scattering data, we have
demonstrated that the E-C algorithms are less susceptible to modeling errors due to viola-
tion of first-order scattering approximations. These same results have been verified for the
minimum-scan DT problem.

2.3.2 Implementation and evaluation of nonlinear reconstruction algorithms

Using simulated strongly scattering data, we have started to numerically investigate nonlinear
reconstruction algorithms for 2D DT. As described in Section 2.2.1, our nonlinear reconstruc-
tion algorithms utilize a forward scattering operator that assumes the validity of a higher-order
Born or Rytov terms. An accurate numerical implementation of the forward scattering oper-
ator is critical for obtaining accurate reconstructions using our algorithms. In a preliminary
study, we have encountered difficulty in achieving an accurate numerical implementation of
this operator. The forward scattering models employed by our families of nonlinear algorithms
involve an integration over a complex frequency variable, which is not computable in practice.
Accordingly, numerical inaccuracies were introduced by truncating the limits of integration,
which we observed to introduce a severe degradation in the reconstructed image quality. We
are currently investigating methods for mitigating the effects of the integration truncation used
by the forward scattering operator.

2.4 Development and evaluation of reconstruction algorithms for reflec-
tivity tomography

Reflectivity tomography has been applied to numerous biomedical and non-destructive test
imaging problems [24-27]. It has a strong relationship to UDT and can be a potential useful
technique for imaging the breast cancer. The task in reflectivity tomography is to reconstruct
from the measured data a function describing the reflectivity distribution within the breast.
It has been generally considered that accurate images can be reconstructed only from full
scan data over 27. Recently, we have investigated and evaluated image reconstruction from
minimum-scan data in reflectivity tomography. Using the so-called potato-peeler perspective
that we developed, we showed that accurate images can be reconstructed from minimum-scan
data in reflectivity tomography. We also performed quantitative studies by use of computer
simulated data, and the results in such studies validated our theoretical results for image re-
construction in minimum-scan reflectivity tomography.




3 Key research accomplishments

We have developed and evaluated computationally efficient 3D linear reconstruction
algorithms that are more than 100 times faster than the conventional 3D FBPP algorithm.

We have investigated, developed, and evaluated algorithms for image reconstruction
from minimum-scan data in UDT with plane wave sources.

We have investigated, developed, and evaluated algorithms for image reconstruction
from full-scan and minimum-scan data in UDT with fan-beam wave sources.

We have developed and evaluated computationally efficient 3D linear reconstruction
algorithms for UDT with spherical wave sources.

We have developed computationally efficient 2D nonlinear reconstruction algorithms
for UDT with plane wave sources.

We have investigated theoretically the development of computationally efficient nonlin-
ear reconstruction algorithms for 3D UDT.

We have developed computer codes that implement the proposed linear and nonlinear
reconstruction algorithms.

We have evaluated the developed linear and nonlinear reconstruction algorithms by use
of computer simulated and experimental data.

We have developed and evaluated reconstruction algorithms for short-scan reflectivity
tomography.

4 Reportable outcomes

Peer-Reviewed Original Articles

1.

2.

3.

4.

M. Anastasio and X. Pan: Full- and minimal-scan reconstruction algorithms for fan-
beam diffraction tomography, Appl. Opt., 40, 3334-3345, 2001.

X. Pan and M. Anastasio: On a limited-view reconstruction problem in wavefield to-
mography, IEEE Trans. Med. Imaging., 21, 413-416, 2002.

M. Anastasio and X. Pan: Numerically robust minimal-scan reconstruction algorithms
for diffraction tomography via Radon transform inversion, Int. J. Imag. Sys. Tech., (in
press) 2002.

M. Anastasio and X. Pan: An improved reconstruction algorithm for 3D diffraction
tomography with spheric-wave sources, IEEE Trans. Biomed. Eng., (submitted), 2002.




5. X.Pan, Y. Zou, and M. Anastasio: Data redundancy and reduced-scan reconstruction al-
gorithms in reflectivity tomography, IEEE Trans. Image Processing, (submitted), 2002.

6. X. Pan, Y. Zou, and M. Anastasio: Image reconstruction of reflectivity from short scan
data, CD Proc. of International Symposium on Biomedical Imaging, Washington D. C.,
2002.

Ph.D. Thesis

1. M. Anastasio: Development and analysis of iamge reconstruction algorithms in diffrac-
tion tomography, The University of Chicago, 2001.

Peer-Reviewed Proceedings Articles

1. X.Pan and M. Anastasio: Minimal-scan reconstruction algorithms for fan-beam diffrac-
tion tomography and their analogy to halfscan fan-beam CT, IEEE Medical Imaging
Conference Record (CD), 2001.

2. M. Anastasio and X. Pan: Development and evaluation of minimal-scan reconstruction
algorithms for diffraction tomography, Proc. SPIE, (in press), 2001.

Abstracts and Presentations

1. X. Pan and M. Anastasio: Reconstruction algorithms in diffraction tomography, Ad-
vanced Light Source, Lawrence Berkeley National Laboratory, California, (Host: Dr.
Malcolm Howells), October 29, 2001.

2. M. Anastasio, Y. Zou, and X. Pan: Reflectivity tomography using temporally truncated
data, The 2nd Joint Meeting of the IEEE Engineering in Medicine and Biology Society
and Biomedical Engineering Society, (submitted,) Houston, 2002.

3. Y. Zou, M. Anastasio, and X. Pan: Data truncation and the exterior problem in reflection-
mode tomography, IEEE Medical Imaging Conference, (submitted,) Norfolk, 2002.

5 Conclusion

Ultrasonic diffraction tomography is a potentially important technique for imaging of the
breast cancer. In this project, we have investigated, developed, and evaluated computation-
ally efficient and statistically optimal algorithms for accurate reconstruction of UDT images
that may find applications in UDT imaging of breast cancer. In the last year, we have made
contributions to UDT research, as summarized above. Our research on UDT have addressed
numerous scientific and engineering problems involved in UDT image reconstruction. These
results are necessary in making UDT a viable medical imaging technique for imaging breast
cancer.
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Full- and minimal-scan reconstruction algorithms
for fan-beam diffraction tomography

Mark A. Anastasio and Xiaochuan Pan

Diffraction tomography (DT) is a tomographic inversion technique that reconstructs the spatially variant
refractive-index distribution of a scattering object. In fan-beam DT, the interrogating radiation is not
a plane wave but rather a cylindrical wave front emanating from a line source located a finite distance
from the scattering object. We reveal and examine the redundant information that is inherent in the
fan-beam DT data function. Such redundant information can be exploited to reduce the reconstructed
image variance or, alternatively, to reduce the angular scanning requirements of the fan-beam DT
experiment. We develop novel filtered backpropagation and estimate—combination reconstruction al-
gorithms for full-scan and minimal-scan fan-beam DT. The full-scan algorithms utilize measurements
taken over the angular range 0 < ¢ = 2m, whereas the minimal-scan reconstruction algorithms utilize
only measurements taken over the angular range 0 < ¢ =< ¢,;,,, where 7 < ¢, < 3w/2 is a specified
function that describes the fan-beam geometry. We demonstrate that the full- and minimal-scan fan-
beam algorithms are mathematically equivalent. An implementation of the algorithms and numerical
results obtained with noiseless and noisy simulated data are presented. © 2001 Optical Society of

America

OCIS codes: 100.3190, 100.3010, 100.6950.

1. Introduction

Diffraction tomography (DT) is an inversion scheme
that can be used for obtaining the spatially variant
refractive-index distribution of a scattering object.
Applications of DT can be found in various scientific
fields such as medical imaging,? nondestructive
evaluation of materials,34 and geophysics.5¢ Unlike
the x rays used in computed tomography (CT), the
optical or acoustical wave fields employed in DT do
not generally travel along straight lines, thus pre-
cluding the use of the geometrical optics approxima-
tion. Therefore a wide variety of techniques that are
suitable for reconstruction of CT images cannot be
used directly for reconstruction of diffraction tomo-
graphicimages. CT can be viewed as a limiting case
of DT, in which the frequency of the probing radiation
tends toward infinity.

A vast majority of the algorithm development ef-
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forts in DT have utilized the classic scanning geom-
etry,” which assumes that the interrogating radiation
is plane wave and the transmitted scattered wave
field is measured in a plane (or in two dimensions,
along a line) on the opposite side of the scattering
object. This geometry is analogous to the parallel-
beam geometry of x-ray CT. In many practical sit-
uations, however, the interrogating radiation may be
not plane wave but rather produced by a line source
located a finite distance from the scattering object.
We refer to this configuration as the fan-beam geom-
etry of DT,8 which is somewhat analogous to the two-
dimensional (2D) fan-beam geometry of CT.

The Born and Rytov approximations® are weak-
scattering approximations that effectively linearize
the inhomogeneous Helmholtz and Ricatti equations,
respectively. The relative merits of the Born and
Rytov approximations in the context of DT have been
widely explored in the literature.1%11 Under weak-
scattering conditions it is customary and useful in DT
to invoke the Born or Rytov approximation that per-
mits the derivation of the Fourier diffraction projec-
tion (FDP) theorem. The FDP theorem relates the
one-dimensional (1D) Fourier transform of the mea-
sured scattered data to the 2D Fourier transform of
the scattering object. For 2D DT employing plane-
wave illumination and the classic scan configuration,
Devaney” utilized the FDP theorem to develop the




well-known filtered backpropagation (FBPP) algo-
rithm, which can be viewed as a generalization of the
conventional filtered backprojection (FBPJ) algo-
rithm of x-ray CT. Alternative families of plane-
wave DT reconstruction algorithms, referred to as
estimate—combination (E-C) algorithms and general-
ized FBPP algorithms, have been developed!? and
investigated.1314 The family of plane-wave E-C al-
gorithms effectively operates by transforming (in 2D
Fourier space) the DT problem into a 2D Radon
transform problem that can be efficiently and stably
inverted by use of the FBPJ algorithm. The family

-of plane-wave generalized FBPP algorithms recon-
structs the image directly from the DT data function
and includes the FBPP algorithm as a special mem-
ber. Both the generalized FBPP and E-C algorithms
generally require scattered data measured from view
angles in [0, 27) to perform an exact reconstruction of
a complex-valued scattering object. Accordingly, we
refer to these algorithms as being full-scan algo-
rithms.

Previously we showed5 that, in plane-wave DT
that employs the 2D classic scanning geometry, a
minimal-scan data set acquired by use of view angles
only in [0, ¢, ;, = 37/2] contains all the information
necessary for exact reconstruction of the scattering
object function. As the frequency of the probing ra-
diation tends toward infinity, ¢;, — , which re-
flects the well-known fact that measurements
corresponding to ¢ € [0, 7] completely specify the 2D
Radon transform. [Of course, compactly supported
objects are mathematically specified by a sinogram
p(E, do), where ¢, is contained in any open set [0, €),
but if p(§, dg) is not continuously sampled this obser-
vation does not yield stable reconstruction algo-
rithms.] We subsequently developed minimal-scan
FBPP?5 and minimal-scan E-C'6¢ algorithms that
were capable of reconstructing the scattering object
function by use of the minimal-scan data set. Under
the conditions of continuous sampling and in the ab-
sence of noise, we demonstrated'é that the minimal-
scan FBPP and E-C reconstruction algorithms were
mathematically equivalent to the full-scan FBPP and
E-C reconstruction algorithms, respectively.

Here we reveal and examine the redundant infor-
mation that is inherent in the fan-beam DT data
function. Such redundant information can be ex-
ploited to reduce the noise in the reconstructed image
or, alternatively, to reduce the angular scanning re-
quirements of the fan-beam DT experiment. We de-
velop novel E-C and FBPP reconstruction algorithms
for full-scan and minimal-scan fan-beam DT. We
demonstrate that the minimal-scan algorithms,
which utilize measurements taken over the angular
range 0 = ¢ = Py, Where ™ = by, = 37/2, are
mathematically equivalent to their full-scan counter-
parts that utilize measurements over the full angular
range 0 < ¢ = 2. An implementation of the algo-
rithms and numerical results obtained with noiseless
and with noisy simulated data are presented.

Measured data

\," - Incident cylindrical

wave

Fig. 1. Fan-beam scanning geometry of 2D DT. The interrogat-
ing cylindrical wave propagates along the y axis, and the scattered
wave field is measured along the line = . We obtain full-scan
and minimal-scan data sets by varying the measurement angle ¢
between 0 and 27 or between 0 and &,,;,, [see Eq. (29)}, respectively.
We assume that S and D are much larger than the transverse
dimension of the scattering object.

2. Background

Here we briefly review the geometry and approxima-
tions that are traditionally employed in fan-beam DT,
as described in the pioneering work of Devaney.8 A
table of the acronyms used in this manuscript is in-
cluded in Appendix A.

A. Fan-Beam Diffraction Tomography

The classic scanning configuration of fan-beam DT is
shown in Fig. 1. The fixed coordinate system (x, y),
the rotated coordinate system (£, m), and the usual
polar coordinates (r, 6) are related by x = rcos 9,y =
rsinf,E=xcosd+ysind =rcos(p —0),andn =
—xsind + ycos g = —rsin(¢ — 8). The scattering
object is illuminated by a monochromatic cylindrical-
wave source located at the position n = —S on the
axis, emitting a wave field of the form

exp(j2mvolr — SB|)
r — S

exp{j2wy [£* + (S + D)*]V%
[€ + (S + D)’ ’

u; (€, &) = U,

= U,

ey

where Uj is the complex amplitude, £ = 21, is the
wave number, § is a unit vector pointing along the
positive m axis, and D is the distance of the detector
surface from the center of rotation. The incident
wave field u;(§, ) could represent a pressure field in
acoustical applications or a scalar electromagnetic
field in optical applications, for example. From mea-
surements of the scattered wave field obtained along
the £ axis oriented at a measurement angle ¢ at a
distance m = D from the origin, one seeks to recon-
struct the scattering object function a(r). The un-
derlying physical property of the scattering object
that is mapped in DT is the refractive-index distri-
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bution n(r) which is related to the scattering object
function by the equation a(r) = n%(r) — 1.

Let u(¢, ¢) denote the measured total wave field
along the line n = D, as shown in Fig. 1. The scat-
tered data are given by

u (&, o) = u(§, o) — u;(§, ), (2

which can be treated as a measurable data function
because u(£, ) and u; (£, ¢) can be measured. There-
fore we can 1ntroduce a modified data function M(v,,,,
&), which is given by

M@, $) = — v exp[—j2w(v’' — vo) D]
e | UdE $)
J’”m{ui(g, ¢)} ’ ®
where

%, (h(D)} = (1/2m) f " h(®exp(~j2m)dE,

—00

CY)

v
v’ = V02 - x—";'. (5)

B. Fan-Beam Fourier Diffraction Projection Theorem

In plane-wave DT, the FDP theorem?? relates the
modified data function to the 2D Fourier transform of
the scattering object and can be viewed as a general-
ization of the Fourier slice theorem of conventional
x-ray CT. The FDP theorem is valid under condi-
tions of weak scattering and plane-wave illumina-
tion. To establish the FDP theorem for the fan-
beam DT geometry it is necessary to assume the
weak-scattering approximation and the so-called
paraxial approximation,8 which is a well-known ap-
proximation in the optics literature. The paraxial
approximation requires that both S and D be much
larger than the dimension size of the scattering ob-
ject. This amounts to requiring that the largest an-
gle subtended by the object when the object is viewed
from either the source or the measurement location
be much smaller than a radian.

Under the Born and paraxial approximations, Dev-
aney derived the fan-beam FDP theorem,?® which is
given by

’ ’ Fourier Transform of
/ Modified Data

™>
~
>

Y

Vg

B

Fig. 2. The fan-beam FDP theorem states that M(v,,, ¢) is equal
to the 2D Fourier transform of a(r) along the semielliptic arc AOB
that has semiaxes equal to v, and vy/x.

As displayed in Fig. 2, Eq. (6) states that the modified
data function, M(v,,, ¢), is equal to a semielliptical
slice, oriented at angle ¢, through the 2D Fourier
transform of the object function a(xr). One can also
derive the FDP theorem by employing the Rytov ap-
proximation instead of the Born approximation. In
this case, Eq. (6) remains unchanged and only Eq. (3)
needs to be appropriately redefined.?

3. Full-Scan Reconstruction Algorithms for Fan-Beam
Diffraction Tomography

First, we present families of full-scan FBPP and E-C
reconstruction algorithms for fan-beam DT. These
fan-beam algorithms are novel and contain the pre-
viously developed families of plane-wave FBPP and
E-C algorithms as limiting cases. They will be gen-
eralized to the minimal-scan situation in Section 4
below.

A. Fan-Beam Full-Scan Estimate—Combination
Algorithms

The Radon transform?!® of the scattering object func-
tion a(r, 9) is defined as
p(& b0 = f f alr, 0)3[€ — r cos(dy - ©)1dr,
)

where ¢ is the projection angle, &€ = r cos(dy — 0), and
m = —rsin(¢y — 0). The 2D Fourier transform of p(¢,
&) is defined as [strictly speaking, P,(v,) is the com-

M., ¢) =

i r a(r)exp{—JZTr[

0
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(v - Vo)n”

vml = xvo,

[Vl > xvo. (6)




bination of the 1D Fourier transform with respect to
v, and a 1D Fourier series expansion with respect to
&, of the Radon transform]

1 27 flo
%.L f-wp(g’ ¢0)

X exp[ —j27v,¢ — jRdoldEdd,, (8)

where v, is the spatial frequency with respect to £ and
the integer % is the angular frequency index with
respect to ¢, It is well known that a(r, 6) can
readily be reconstructed exactly from its Radon
transform p(g, &) [or, equivalently, P,(v,)] by use of
a wide variety of computationally efficient and nu-
merically stable reconstruction algorithms such as
the FBPJ algorithm. Therefore the task of image
reconstruction in fan-beam DT is tantamount to the
task of estimating P,(v,). Furthermore, because
P, (v,) for v, = 0 contains full knowledge of the Radon
transform, one needs to estimate P,(v,) from the mea-
sured scattered data only for v, = 0.

Pk(va) =

Comparison of Egs. (9) and (11) yields that, for |v,,,|
= XVo,

i Pk(va) = ‘Y(vm/xz)kMk(vm),
provided that

) Vi 2 , Vi 271/2 2
Vv, = ;(‘2- +4 vy — *;(“ -y . (14)

From Eq. §14£ we see that v, is real (thatis,0 = v, =
1 + 1/x* only for lv,, | = xVo.

In the absence of data noise or inconsistencies, one
can use Eq. (13) to obtain P,(v,) exactly from M, k(v ),
which can readily be obtained from the modified data
function. In the presence of data noise or inconsis-
tencies, one can use Eq. (13) to obtain an estimate of
P,(v,). For any given 0 = v, < vy\/T + 1/X2Z, we
show in Appendix B that four different roots v,,;,i = 1,
2, 8, 4, satisfy Eq. (14). However, only two of these
four roots correspond to real-valued frequem:les which
are given by

(13)

Vm1= “Vp2 = Vp = va(l -

4 1/2
X ) (15)

vaz 1/2
4"02) (Vz{l = (1= XA W/2ve") + [1 = x*(1 = X /v

From Egs. (7) and (8) it can be shown?!? that
2m o0
Pywo) = (=) f f o)
8=0 Vr=0

X exp(—jk0)J(2wv,r)rdrdo, 9)
where J, indicates the kth-order Bessel function of
the first kind. Because M(v,,, ¢) is a periodic func-
tion of ¢, it can be expanded into a Fourier series with
expansion coefficients given by

1 2

Mk(vm) = ﬂf M(vm’ d))exp(—.]kd))dd) (10)
0

Substituting Eq. (6) into Eq. (10), noting that £ = r

cos(d — 0) and n = —r sin($ — 0), and carrying out the

integration over angle ¢ (Ref. 19) yield

In the plane-wave case there are only two roots,12
which one can obtain from Eq. (15) by letting x = 1.

Therefore, for a given 0 < v, < vy(1 + 1/x%)2, one
can obtain two estimates of P,(v,) from knowledge of
M,(v,,) at v,,; and v,,,, namely,

k
P,,<va>=[ (""‘1)] My, = [ ( "‘)] M,(v,),
X X

(16)
Py(v,) = [w(”x"”)] M, (v,n0)

-k
= (—1)k[y(;—’;‘)] My(~v,).

In estabhshmg Eq. (17) we used the property y(—v,,")
= —y(v,,)"Y. Tt can readily be shown that, as the

a7

o0 27 .
M) = (=) (v, )" f j a(r)exp(—jk8)Jy(2nr v, % — v,P)rdrde [V, = xVo,
r=0 ¥9=0

=0

[Vl > xvo, (11)

where v,,' = v,,/x%, v, =Jj(»' — vp), and

Y(v.') = = (12)

incident wave becomes planar (i.e., as x — 1), the
above results become the results in Ref. 12 for the
plane-wave case.

In the absence of noise, Egs. (16) and (17) yield
identical (and exact) values of P,(v,). In the pres-
ence of data noise (or other inconsistencies), the two
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estimates of P,(v,) are distinct, suggesting that it
may be beneficial to combine the two estimates lin-
early!? to form a final estimate of P,(v,) as

Py(vo) = 04 [Y*Mi(v,)]
+[1 = (v (=1 *Mu(—va)],

where w,(v,,) is a combination coefficient that dic-
tates how Eqs. (16) and (17) are combined. This
strategy of linear combination has been demon-
strated to be useful in reducing the noise in the re-
constructed image.12-14 Because each selection of
w,(v,,) gives rise to a particular final estimate P,(v,),
Eq. (18) can be interpreted as an estimation method
for obtaining P,(v,) (or, equivalently, the Radon
transform). Because w,(v,,) may be any complex-
valued function of v,, and &, Eq. (18), in effect, pro-
vides infinite families of estimation methods. From

- the estimate P,(v,) (i.e., the Radon transform), one
can subsequently reconstruct the image a(r) by use of
the FBPJ algorithm. For simplicity, the use of Eq.
(18) to estimate P,(v,) coupled with the 2D FBPJ
algorithm to reconstruct a(r) is referred to as a fan-
beam full-scan E-C reconstruction algorithm. As S
— o, we observe that x — 1 and that the fan-beam
full-scan E-C reconstruction algorithms reduce to the
plane-wave full-scan E-C reconstruction algorithms
developed previously.1?

(18)

B. Fan-Beam Full-Scan Filtered Backpropagation
Algorithms

The fan-beam full-scan E-C algorithms discussed
above first estimate P,(v,) (i.e., the Radon transform)
from the modified data function M,(v,,) and subse-
quently reconstruct the image by inverting the esti-
mated Radon transform. Below, we develop
algorithms that reconstruct images directly from the
modified data function. Using Eq. (9), one can di-
rectly express the object function in terms of the es-
timate P,(v,) as -

a@=2m 3 j j " P
ve=0

k=
X exp(jk0)J,(2mv,r)v,dv,. 19)
Substituting Eq. (18) into Eq. (19) yields
had " . vo /1+1/x2 .
a(m)=2m S }* exp(jk0) J (M0,
=" V=0

1 = 0s@n))(= DAy M=) u(@mvar)vadve.

(20

Using the relationship between v, and v,, in Eq. (14),
one can show that, for 0 < v, < vyV1 + 1/)%,

v, dv,,’
P L= XY + Xl

v dv, = 21
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Substituting this result into Eq. (20), and noting that

?

Vm = vm/ X2y yields

alr)=m i j* exp(jk0) on ‘im’ [(1- X2)'v,
b=-c " V=0 XV
+ X (V) VMy(v,) + [1 = 0(v,)]
X (=D *My(—va)}
X [ 27(v, 2 - vuzr)l/z]dvm. (22)

To reduce Eq. (22) to the form of the FBPP algo-
rithm, we assume that w,(v,,,) + w,(-v,,) = 1. Using
the integral identities!?

() () ** exp(jRO)T[2n(v,'? — ,7r) 7]

1 2%
= -2-—11—_.[ exp[jk(b + j27v, % +2mwy,m[dd  (23)
0

ahd defining

o0

MO, ) = X, exp(jkd)x(vn) My(v,,)

=—00

@4

yield for Eq. (22)

a(r) = % J%' 'rvo Il:ml, [1- Xz)vl +,x2v0]M("’)(v,,,, b)
x*v

0 —XVvo

X exp[jZ'n'v,,, % + 2fn'v|m] dédv,,. (25)

Equation (25) describes a family of fan-beam full-scan
FBPP algorithms [indexed by the choice of w,(v,,)],
which becomes the family of FBPP algorithms for
plane-wave full-scan DT?*2 when x — 1. In particu-
lar, when w,(v,,) = 1/2, Eq. (25) corresponds to the
fan-beam FBPP algorithm suggested by Devaney.8
Because the derivation of the family of fan-beam full-
scan FBPP algorithms was based on the family of
fan-beam full-scan E-C algorithms [Eq. (20)], the E-C
and FBPP algorithms are mathematically equiva-
lent. However, as will be demonstrated below, these
FBPP and E-C algorithms respond differently to data
noise and other experimental errors.

4. Minimal-Scan Reconstruction Algorithms for
Fan-Beam Diffraction Tomography

As discussed above, the redundant information con-
tained in the scattered data can be employed for re-
ducing the image noise. Such information can also
be used for reducing the angular scanning require-
ments in a DT experiment.

A. Consistency Conditions and the Fan-Beam Data
Space ’
According to the fan-beam FDP theorem in Eq. (6),
the modified data function M(v,,, ¢) satisfies the con-
sistency condition

M(vms ¢) = M(—vm, ¢ +m - 20‘), ) (26)




27
9
¢min
N4
¢
%R
T—20
A
0
) 0 +xv
Um

Fig. 3. Complete data space W = 4 U B U € U D contains data
from the view angles in [0, 27]. Subset £ = U A U B U €
obtained from the view angles in [0, ¢,,;,] is called the minimal-
complete data set. The minimal-complete data set contains all
the information necessary for exact reconstruction of the scattering
object function.

where

O - Vo)2 2
Vn'/X®) + (v = vo)?
Let W =[Jv,,| = xvo, 0 = ¢ = 27] denote the complete
(or full-scan) data set. As shown in Fig. 3, W can be

divided into the four subspaces, #, %, 6, and D,
where

sin a = sgn(v,,) 27

A = [|v,| = xvo, ,0 = ¢ = 20 + 23],

B = [|vnl < xv0, 20 + 28 < =7 + 2a],
G =[|vnml = xvo, ™+ 200 = & = dpinl,

D = [[v,] = xvo, Spuin = & = 27],

where

1
1+ 1/x)"

Using Eqgs. (26) and (27), one can verify that infor-
mation in subspace € is identical to that in subspace
o and that information in subspace @ is identical to
that in subspace @. As shown in Fig. 3, because the
boundaries between the subspaces are generally
functions of v,, and ¢ and because each horizontal
line in ‘W corresponds to a measurement acquired at
a particular view angle, the information in subspace
9% cannot in practice be determined independently of
that in subspace € and vice versa. We therefore
refer to the union, M = A U B UG = [|v,,,] = xv0,0 =
& = b, as the minimal-complete data set. A plot
of din, Versus xis shownin Fig. 4. Asx—1, b, —
3m/2, and M reduces to the minimal-complete data
set proposed previously for plane-wave DT.15 How-
ever, for x < 1, ¢, < 37/2, which indicates that the

sind = Gmin = ™ + 23, (28)

DB e e

240} ¥

a0 pd
7

¢mi1§ (degrees)

200

1800 0,25 05 0.75 1

X

Fig. 4. Plot of ¢,;, versus x reveals that, in fan-beam DT, the
required angular scanning range is less than 270°.

angular scanning requirements of fan-beam DT are
less restrictive than for plane-wave DT.

Figure 5 clearly demonstrates that the minimal-
complete data set contains all the information re-
quired for an exact reconstruction. According to the
FDP theorem, the segment AOB corresponds to a
semielliptical slice through the 2D Fourier transform
of a(r), which can be obtained from the modified data
function M(v,,, $). The Fourier space coverages pro-
duced by the segments OA and OB as ¢ varies from
0 to ¢, are shown in Figs. 5(a) and 5(b), respec-

Vg

(a) ()

()
Fig. 5. As ¢ varies from 0 to ¢, the two segments OA and OB
(Fig. 2) yield two incomplete coverages of the 2D Fourier space of
the object function, which are shown in (a) and (b), respectively.
Superimposing the two incomplete coverages in (a) and (b), one
obtains a complete coverage, as shown in (c), of the 2D Fourier
space of the object function.
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tively. It can be observed that each of these two
coverages alone provides only an incomplete coverage
of the 2D Fourier space of a(r). However, one can
superimpose these two incomplete coverages in Figs.
5(a) and 5(b) to obtain complete coverage of the 2D
Fourier space of a(r), as shown in Fig. 5(c).

The redundant information contained in subspaces
s and 6 of the minimal-complete data set needs to be
normalized properly before or during the reconstruc-
tion procedure. Let M™(v,, ) denote the minimal
scan data, where M™ (v, &) = M(v,,, ) for 0 = ¢ =
Gmin and M™ @, ¢) = 0 for ¢y, < & < 2w Con-
sider a weighted data set M'(v,,, ¢), defined as

M (v, $) = w(v,, YM™(v,, 0), (29)

where w(v,,, ¢) can be a function of v,, and ¢ that
satisfies

Wy, 6) + W(—V,, d+7T—20) =1 (302)
in complete data space W,
w(Vm ¢) =1 (30b)
in subspace @&, and |
w(m, ¢) =0 (30c)

in subspace 9. One can choose different w(v,,, ¢) in
subspaces & and €6 as long as these w(v,,, ¢) satisfy
Eq. 30(a). In the numerical examples that follow,
we used the explicit form for w(v,,, ¢) given by Eq.
(38). We can now readily obtain minimal-scan re-
construction algorithms for fan-beam DT.

B. Fan-Beam Minimal-Scan Estimate~Combination
Algorithms ¢
Because of Eq. 30(c), Eq. (29) can also be rewritten as

M (3, &) = W, My ¢). (8D
Using Egs. (26) and (30a), one can verify that

M(vma ¢) = M'(vm; ¢) + M'('—vm, ¢ + 7 — 20()
(32)
Using Eq. (32) in Eq. (10), one obtains

Mi(v,) = [My' (v,) + (=DM, (-v,)], (33)
where

My (v,) = (1/2m) J' " exp(—jkd) M (v, $)dd.

1]

Multiplying both sides of Eq. (33) by v* and noting
Eq. (16), we conclude that, for |v,,| = xvo,

Pyvo) = [V'My' (v,) + (DM 7*M (-v)],  (39)

where v, and v,, are related by Eq. (14). A fan-beam
minimal-scan E-C algorithm is formed by use of Eq.
(34) to estimate the Radon transform from the
minimal-complete data set acquired at measurement
angles 0 =< ¢ = ¢, and the FBPJ algorithm to
reconstruct the final image. One can form different
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Fig. 6. The numerical phantom used in the simulation studies
comprised two concentric ellipses. The fan-beam FDP theorem
was used to calculate analytically the simulated scattered field
data from the phantom.

fan-beam minimal-scan E-C algorithms by specifying
different choices for w(v,,, $) in Eq. (31) that satisfy
Eqgs. (30). .

C. Fan-Beam Minimal-Scan Filtered Backpropagation
Algorithms :

Using Eq. (34) in Eq. (19) and using the strategy
outlined in Subsection 3.B, we can also develop fan-
beam minimal-scan FBPP algorithms that can recon-
struct the object function directly from the weighted
minimal-complete data set that is given by

_ dmin  f'xvo M oy 2 , .
a(r) = o [ =0+ XM (v, 6)
0 -Xvo

X exp[jZ'n-v,,, % + 2mv,m |dddv,, - (35)
X

where ¢.,;, is a function of x as stated in Eq. (28).
One can form different fan-beam minimal-scan FBPP
algorithms by specifying different choices for w(v,,, )
in Eq. (31) that satisfy Egs. (30). When x = 1, the
fan-beam minimal-scan FBPP algorithms reduce to
the plane-wave minimal-scan FBPP algorithms de-
rived previously.15

5. Numerical Results

We numerically investigated the fan-beam full- and
minimal-scan reconstruction algorithms, using sim-
ulated noiseless and noisy data.

A. Data and Noise Model

We employed the numerical phantom composed of
two concentric ellipses, as displayed in Fig. 6. The
values of the scattering object function that corre-
spond to the outer and inner ellipses are 0.0005 and
0.0001, respectively. We chose a fan-beam geometry
specified by x = 0.8, but our observations below hold
for arbitrary x. The FDP theorem was employed to
calculate analytically the modified data function
M(v,,, ¢) that by means of Eq. (3) determined the
scattered field data u (¢, ¢). Therefore our simula-
tions were designed to demonstrate the performance
of the reconstruction algorithms under the condition
that the Born and paraxial approximations are valid.
The evaluation of the performance of the algorithms
when the Born and paraxial approximations are not
valid1%.11.20 remains a topic for future study. The




discrete complete data set comprised 128 equally
spaced measurement angles in [0, 2w). The discrete
minimal-complete data set comprised 92 equally
spaced measurement angles in [0, 4.49] (or, equiva-
lently, [0, 257.3°]). In this way, both data sets had
the same angular sampling increment, A = 2m/
128 ~ 4.49/92. The data function M(v,,, ¢) con-
tained 129 evenly spaced samples in [—xv,, xvol-

To simulate the effects of data noise, we treated the
scattered data u,(§, ¢) as a complex stochastic pro-
cess with a real and an imaginary component, de-
noted u,? (¢, ) and u,?(¢, ¢), respectively. (Here,
boldface type for u and a denotes a random variable,)
Let u,” = 4, + Au® and u,® = ¢,@ + Au®,
where ©,” and u,© are the means of u,”) and u,?
respectively. The statistics of the deviates Au,"
and Au,® are described by the circular Gaussian
model,

. 1
Au® A O = — -,
p(Au,”, Au,”) Dy

1 [(Au” Au”
X exp _E Z +——2— ,

g, g;
(36)

where 0,2 and ¢, are the variances of Au,” (¢, ) and
Au (&, ¢), respectively.

To study the noise properties of the reconstructed
images quantitatively, we generated N = 250 noisy
complete and minimal-complete data sets by using
the noise model in Eq. (36) with o, = o; = 0.05. We
used the fan-beam full-scan and minimal-scan E-C
and FBPP algorithms to reconstruct sets of 250 noisy
images from these noisy data sets. The matrix size
" of the reconstructed images was 128 X 128 pixels,
and the wavelength of the incident radiation was
equal to 2 pixels. The local image variance was cal-
culated empirically from the N sets of reconstructed
images as

1 ' N 1 N 2
varfa(r)] = +— {2 a,(r)’ - N [2 ai(r)] } -

i=1 i=1

37

where a,(r) is the ith image obtained by use of the
reconstruction algorithm under investigation.

B. Implementation Details

1. E-C Algorithms

From the uniformly sampled values of the scattered
field u, (&, &), M, (v,,) can be determined at uniformly
spaced values of v,,. However, because of the non-
linear relationship [Eq. (14)] between v, and v,,, the
uniformly spaced values of v,, at which M,(v,,) is
sampled do not generally correspond to the uniformly
spaced values of v, at which one needs to evaluate
P,(v,) (to utilize the fast Fourier transform in the
FBPJ algorithm). For each of 65 evenly spaced val-
ues of v, spanning the range 0 = v, < vo\/] 1+ 1/%%
we used linear interpolation to determine the values

of My(v,, = Vv, 2 + vpz) and M,(v,, = ~Vv,2 + vMZ)
from the sampled values of M,(v,) and M,(-v,,),
which we subsequently used in Eq. (18) to evaluate
P,(v,). For each value of &, zero-padding interpola-
tion was employed to increase the sampling density
along the v,, axis of M,(v,,) by a factor of 3 to increase
the accuracy of the interpolation operation. We em-
ployed the consistency condition P,(v,) =
(—1)*P,(—v,) to obtain the 64 samples of P,(v,) for v,
spanning the range —voV1 + 1/ )(é =y,<0. Inour
implementation of the FBPJ algorithm, an unapo-
dized ramp filter was used. The interpolation nec-
essary for aligning the backprojected data onto a
128 X 128 pixel discrete image matrix was performed
by bilinear interpolation. When M,(v,,) is replaced
by M,'(v,,), and Eq. (34) is employed in place of Eq.
(18), the above paragraph also describes our imple-
mentation of the fan-beam minimal-scan E-C algo-
rithm.

2. FBPP Algorithms

In the full-scan and minimal-scan FBPP algorithms,
at each measurement angle &, M(v,,, &) or M'(v,,, d),
respectively, was multiplied bgr the depth-dependent
filter (jv,,|/x*")[(1 ~ x®v' + x*volexp[2mv,m] for each
of 128 discrete values of 1. For each value of 1, the
filtered data were zero padded to ensure that the
pixel size of the reconstructed image matched the
pixel size of the images reconstructed by use of the
full- and minimal-scan E-C algorithms. The inter-
polation necessary for aligning the backpropagated
data onto a 128 X 128 pixel discrete image matrix
was performed by bilinear interpolation.

The fan-beam minimal-scan E-C and minimal-scan
FBPP algorithms utilized the weight function w(v,,,,

®) [see Eq. (29)] given by

WV, )
3 23.-._L <d <
s1n[4(w/4)_a] 0=db=25+2a
11 20+2a=d=7+2a
e [m(Bm/2) - ¢ — ’
sin’ [4-—~—-—~—————(w/4)+a] T+ 20=<d=<dyn
\0 4)min-5¢52""r
(38)
C. Results

From the simulated noiseless complete and minimal-
complete data sets we reconstructed the phantom,
using the full- and minimal-scan fan-beam recon-
struction algorithms. Figures 7(a) and 7(b) show
the images obtained from the full-scan and the
minimal-scan E-C reconstruction algorithms, respec-
tively. The full-scan E-C algorithm was specified by
w,(v,,) = 1/2 in Eq. (18). The images appear iden-
tical, as is consistent with our assertion that the full-
and minimal-scan E-C algorithms are mathemati-
cally equivalent in the absence of noise or other er-
rors. Figures 7(c) and 7(d) show the images
obtained by use of the full-scan and the minimal-scan
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(a) ®

© : (d)
Fig. 7. Images reconstructed from noiseless data by use of (a)
full-scan E-C, (b) minimal-scan E-C, (c) full-scan FBPP, and (d)
minimal-scan FBPP reconstruction algorithms.

FBPP reconstruction algorithms, respectively.
Again, the images appear identical, consistent with
our assertion that the full- and minimal-scan FBPP
algorithms are mathematically equivalent in the ab-
sence of noise or other errors. As expected, it is also
observed that the images reconstructed with the full-
and minimal-scan E-C algorithms [Figs. 7(a) and
7(b)] are identical to the images reconstructed with
the full- and minimal-scan FBPP algorithms [Figs.
7(c) and 7(d)].

Using one of the simulated noisy complete and
minimal-complete data sets, we again reconstructed
the phantom, using the full- and minimal-scan E-C
and FBPP reconstruction algorithms. Figures 8(a)
and 8(b) show the images obtained by use of the
full-scan and the minimal-scan E-C reconstruction
algorithms, respectively. The images no longer ap-
pear identical, and the image reconstructed with the
full-scan E-C algorithm appears less noisy than the
image reconstructed with the minimal-scan E-C al-
gorithm. Figures 8(c) and 8(d) show the images ob-
tained by use of the full-scan and the minimal-scan
FBPP reconstruction algorithms, respectively. Simi-
larly, the image reconstructed with the full-scan
FBPP algorithm appears less noisy than the image
reconstructed with the minimal-scan FBPP algo-
rithm.

The observation that the full-scan algorithms gen-
erate cleaner-looking images than do the minimal-
scan algorithms is not surprising and can be
qualitatively understood by examination of ways in
which the redundant information inherent in the DT
data function is utilized. The full-scan FBPP and
E-C algorithms [with w,(v,,) # 0, 1] effectively use
the redundant information to reconstruct two sepa-
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Fig. 8. Images reconstructed from noisy data by use of (a) full-
scan E-C, (b) minimal-scan E-C, (¢) full-scan FBPP, and (d)
minimal-scan FBPP reconstruction algorithms. The noisy data
were generated with o, = ¢; = 0.05 in Eq. (36).

rate images that are averaged to form the final image.
It has been quantitatively demonstrated that this
effective averaging operation can result in an unbi-
ased reduction of the reconstructed image vari-
ance.1214 The minimal-scan algorithms, however,
utilize part of the redundant information that is in-
herent in the data function to reduce the angular
range over which measurements are required for the
reconstruction. The redundant information not
used for this purpose can be used to reduce the image
variance of the reconstructed image. Specifically,
the complementary information contained in sub-
spaces & and € of Fig. 3 is weighted, as described by
Eq. (29), and is subsequently combined during the
reconstruction procedure. However, unlike the full-
scan algorithms, the minimal-scan algorithms cannot
further reduce the reconstructed image variance by
exploiting the fact that subspaces % and 9 contain
redundant information.

Although the full- and minimal-scan E-C algo-
rithms are mathematically equivalent to the full- and
minimal-scan FBPP algorithms, we observed from
Fig. 8 that the E-C and FBPP algorithms respond
differently to noise that is present in a discrete data
set. To confirm this observation quantitatively, we
calculated the local image variances of images recon-
structed, using the different methods. Figure 9(a) is
a plot of the local variance obtained from the
minimal-scan FBPP reconstructed images divided by
the local variance obtained from the minimal-scan
E-C reconstructed images. Clearly, the ratio of the
variances is everywhere greater than 1, quantita-
tively demonstrating that the minimal-scan E-C re-
construction algorithms are less susceptible to the
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Fig. 9. (a) Plot of the local variance obtained from the full-scan
FBPP reconstructed images divided by the local variance obtained
from full-scan E-C reconstructed images. (b) Plot of the local
variance obtained from the minimal-scan FBPP reconstructed im-
ages divided by the local variance obtained from minimal-scan E-C
reconstructed images. In both the full- and the minimal-scan
cases, the E-C algorithms did a better job of suppressing data noise
than did the FBPP algorithms.

effects of data noise than are the minimal-scan FBPP
reconstruction algorithms. Figure 9(b) is a plot of
the local variance obtained from the full-scan FBPP
reconstructed images divided by the local variance
obtained from the full-scan E-C reconstructed im-
ages. The ratio of the variances is everywhere
greater than 1, quantitatively demonstrating that
‘the full-scan E-C reconstruction algorithms are less
susceptible to the effects of data noise than are the
full-scan FBPP reconstruction algorithms. These
results are consistent with those obtained previously
for full- and minimal-scan DT utilizing plane-wave
illumination.16.21

6. Summary

In this study, we revealed and examined the redun-
dant information that is inherent in the fan-beam DT

data function. Such information can be exploited to
reduce the reconstructed image variance or alterna-
tively to reduce the angular scanning requirements of
the fan-beam DT experiment. We developed novel
full-scan and minimal-scan E-C and FBPP recon-
struction algorithms for fan-beam DT. The family of
fan-beam full-scan E-C algorithms operates by trans-
forming (in 2D Fourier space) the fan-beam DT prob-
lem into a 2D parallel-beam x-ray CT problem, which
can be efficiently and stably inverted by use of the
FBPJ algorithm. The family of fan-beam full-scan
FBPP algorithms operates directly on the modified
data function to reconstruct the image and contains
the fan-beam FBPP algorithm suggested by Dev-
aney8 as a special member. Different members of
the families of full-scan E-C and FBPP algorithms
are specified by different choices of the combination
coefficient w,(v,,), which controls ways in which the
redundant information in the data function is com-
bined. Reconstruction algorithms that correspond
to different choices of w,(v,,) will in general respond
differently to the effect of noise and discrete sam-
pling.12

The fan-beam minimal-scan E-C and FBPP algo-
rithms were developed from the concept of the
minimal-complete data set. The minimal-complete
data set, which is acquired by use of view angles only
in [0, il where m =< &, = 37/2, contains all the
information necessary for exactly reconstructing the
scattering object function. The fan-beam minimal-
scan E-C and FBPP algorithms utilize a weighting
function w(v,,, ¢) to normalize appropriately the par-
tially redundant information inherent in the
minimal-complete data set. Accordingly, one can
form different fan-beam minimal-scan E-C and FBPP
algorithms by specifying different choices for this
weighting function. Reconstruction algorithms that
correspond to different choices of w(v,,, ¢) will in
general respond differently to the effect of noise and
discrete sampling.1® It can be readily verified that,
under the conditions of continuous sampling and in
the absence of noise, the minimal-scan E-C and FBPP
algorithms are exact and mathematically equivalent
to their full-scan counterparts that utilize measure-
ments over the angular range 0 < ¢ < 2.

An implementation of the fan-beam full-scan and
minimal-scan algorithms has been presented, along
with numerical results obtained with noiseless and
with noisy simulated data. It was observed that the
full-scan algorithms did a better job of suppressing
data noise than did their minimal-scan counterparts.
We quantitatively demonstrated that the full- and
minimal-scan E-C algorithms are less susceptible to
data noise and to finite sampling effects than are the
full- and minimal-scan FBPP algorithms, respec-
tively. This result is consistent with the observation
that the FBPP-based algorithms involve more-
complicated numerical operations than do the E-C-
based algorithms, which may amplify the
propagation of noise and errors into the reconstructed
image. .

We have assumed a 2D imaging model in this

10 July 2001 / Vol. 40, No. 20 / APPLIED OPTICS 3343




study. Therefore the developed reconstruction algo-
rithms may be useful for applications in which out-

It can readily be verified that the four roots of Eq.
(A2) are given by

Vm3 = “Vms = va(l -

of-plane scattering is not significant. The full-scan
E-C and FBPP reconstruction algorithms can be gen-
eralized readily to address the three-dimensional DT
problem by use of spherical-wave sources and planar

.2 1/2 X4 1/2
= — = —_ a - Iy A3
P T e ”"(1 4v02) (1/2{1 — (L= X020 + [1— XL - xz)(vaz/vOz)]l/z}) “
Va2 1/2 x4 ' )1/2 A

v \Ye{l - (1 = xA/2vo) — [1 — x*(1 = XAl /voH]A]

Because when 0 < v, < voV1 + 1/
p.2 p. 2 1/2
1-(1-x) "2<[1—x2(1—x2)%] , (A5)
It remains unclear whether 2v, Vo

measurement surfaces.
numerically stable versions of the minimal-scan E-C
and FBPP reconstruction algorithms can be devel-
oped for three-dimensional imaging geometries.

Here we have developed linear reconstruction al-
gorithms for fan-beam DT. It was not our intent to
address the limitations of the Born or Rytov10.11
weak-scattering approximation. The developed full-
and minimal-scan algorithms will, however, provide
a natural framework for the incorporation of higher-
order scattering perturbation approximations?2-24
into the algorithms. It remains to be determined
whether minimal-scan reconstruction algorithms can
be developed without use of the paraxial approxima-
tion.25 We intend to report on the theoretical devel-
opment and numerical analysis of these problems in
a forthcoming publication.

Appendix A: Acronyms Used

CT Computed tomography
DT - Diffraction tomography
E—-C reconstruction Estimate-combination recon-

algorithm struction algorithm
FBPJ reconstruction Filtered backprojection re-
algorithm construction algorithm
FBPP reconstruction Filtered backpropagation re-
algorithm construction algorithm
FDP theorem Fourier diffraction projection

theorem

Appendix B: Relationships between v, and v,
From Eq. (14) we know that

. Vi 2 ) Vi 271/2 2
Vo & F + Vo — ; — Voof - (Al)

For a given v, that satisfies 0 = v, = vy V1+1/x*, we
would like to find the values of v,, that satisfy Eq.
(Al). Thisis equivalent to solving for the roots of the
fourth-order equation: '

V)t v\
(1- xz)z(?) +[4v® — 2(1 - x"’)va"‘](;ﬁ)

+ v - v =0. (A2
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we observe that the roots v,,3 and v,,, are complex
valued and therefore are not physically meaningful.
As expected, when x — 1, Eq. (A3) reduces to the
known result2 for plane-wave DT given by.

Vm1 = " V2= va(l - (A6)
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On a Limited-View Reconstruction Problem in Diffraction
Tomography

Xiaochuan Pan* and Mark A. Anastasio

Abstract—Diffraction tomography (DT) is an inversion technique that
reconstructs the refractive index distribution of a scattering object. We pre-
viously demonstrated that by exploiting the redundant information in the
DT data, the scattering object could be exactly reconstructed using mea-
surements taken over the angular range [0, ¢ o], Where ®# < Pmin <

37t /2. In this paper, we reveal a relationship between the maximum scan-
ning angle and image resolution when a filtered backpropagation (FBPP)
reconstruction algorithm is employed for image reconstruction. Based on
this observation, we develop short-scan FBPP algorithms that reconstruct
a low-pass filtered scattering object from measurements acquired over the
angular range [0, $°], where ®° < ¢min.

Index Terms—Diffraction tomography, limited-view tomography, wave-
field inversion techniques.

I. INTRODUCTION

In diffraction tomography (DT), a semi-transparent scattering ob-
ject is‘interrogated using a diffracting optical or acoustical wavefield
and the scattered wavefield around the object is measured and used to
reconstruct the (low-pass filtered) refractive index distribution of the
scattering object. The principles of DT have been extensively utilized
for developing optical and acoustic tomographic imaging systems. Re-
cently, interest in DT within the optical imaging community has in-
creased because of its potential application to the diffuse-photon den-
sity wave tomography [1]-{3].

It was shown previously [4], [5] that, in two-dimensional (2-D) DT
employing plane-wave or cylindrical-wave sources and the classical
scanning geometry, one can reconstruct the scattering object from a
minimal-scan data set comprised of measurements acquired over the
angular range [0, ¢min], Where 7 < ¢dmin < 37/2 is specified by
the measurement geometry. In this paper, we reveal a relationship be-
tween image resolution and maximum scan angle, based upon which
short-scan algorithms can be designed for reconstructing a low-pass
filtered scattering object from measurements acquired over the angular
range [0, $°], where ®° < ¢min. When the scattering object is suf-
ficiently bandlimited, it can be exactly reconstructed from the lim-
ited-view measurements in [0, ®¢]. We present numerical examples
that confirm our theoretical assertions.

II. BACKGROUND

Consider the classical scanning geometry of DT with a cylin-
drical wave source, as shown in Fig. 1. Let (z,y) and (r,9)
denote the fixed Cartesian and polar coordinate systems and
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Fig. 1. The fan-beam scanning geometry of 2-D DT. The interrogating
cylindrical wave propagates along the n axis and the scattered wave field is
measured along the line = 1. § (or D) denotes the distance between the
source (or the detector) and the center of rotation.

(&,n) the rotated coordinate system. These systems are related by
z = rcosf, y = rsinb, £ = xzcosd + ysing = rcos(¢ — 6), and
n = —xsing + ycos¢ = —rsin(¢ — ). The scattering object, which
is embedded in a lossless and homogeneous background medium,
is illuminated by a monochromatic cylindrical-wave =;(&,¢) with
complex amplitude Us and wavenumber k& = 2wwo, generated by
a line source located at the position y = —.S on the 5 axis. From
measurements of the scattered wavefield on the ¢ axis at different
view angles ¢, one seeks to reconstruct the scattering object function
a(7), which is related to the refractive index distribution n(+) within
the scattering object by a(7) = n*(7) — 1.

Let u(¢, ¢) and u, (£, ¢) = u(&, @) —u.(£, ¢) denote the total and
scattered wavefields measured along the line n = D oriented at angle
¢, as shown in Fig. 1. For the sake of convenience, we introduce a
modified data function M (v, ¢) that can be obtained readily from
the scattered wavefield and is defined as

X
Mlom )= 20 wi(E.4)
where x = /S/(S+ D), v' = \/vZ —v2,/x2, and F,_ {h(€)} =
1/(2m) [ h(€)e72™mEd¢. The special case of plane-wave illumi-
nation (S — oo) corresponds to x = 1. Under the Born and paraxial
approximations, Devaney derived the fan-beam Fourier diffraction pro-
jection (FDP) theorem [6], which relates a() to the modified data
function by : ‘

Mmd)= [ [~

- exp {—j27r [5’55 - (v - wo) n] }&F,

Vexp [~j2n(v' - v0)D] Fo. {”——"(5’ ‘”} M

if |om| <xvo

=0 if [l > xv0. 2
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The FDP theorem can also be derived by employing the Rytov
approximation. In this case, (2) remains unchanged and only (1) needs
to be appropriately redefined [6]. When ¢ is varied from O to 27, the
FDP theorem specifies a circular disk of (double) coverage centered
at the origin with radius vo+/1+ 1/x2 in the 2-D Fourier space of
a(#). Conventional full-scan reconstruction algorithms, such as the
well known filtered backpropagation (FBPP) algorithm [7], utilize this
Fourier space coverage for reconstructing a(7). We will refer to such
a (low-pass filtered) reconstructed a(¥) as the “exact” image.

According to the fan-beam FDP theorem in (2), the modified data
function M (v, ¢) satisfies the consistency condition {4]

M (vm,4) = M (—Vm, ¢+ 7 — 20) ©)

where sina = sgn(vm)[((v' — v0)?/(v2/X*) + (V' = yo)z)]lﬁ.
Using (3), one can show [4], [S] that the minimal-scan data acquired
in the angular range {0, ¢min] specifies a circular disk (with radius
vo+/1 + 1/x?2) of coverage in the Fourier space of a(7), where

1

III. A LIMITED-VIEW RECONSTRUCTION PROBLEM FOR 2-D DT

Gmin =7 +26 and sind = @

We focus now on a limited-view problem, in which data are acquired
only over the angular range [0, ®°], where 7 < ®° < @min. In this
situation, it is well known that the exact image cannot, in general, be re-
constructed [8]. However, we demonstrate that algorithms can be devel-
oped for reconstructing a low-pass filtered approximation of the exact
image. Consider a scattering object a®(7) whose 2-D Fourier transform
A°(7) is bandlimited to a disk of radius R, centered at the origin, where

Re(ve) = [(%)2 + [,/ug - (”;)2 - mﬂ " ®)

and 0 < v. < xwo. Then, according to the fan-bearn FDP theorem
in (4), the modified data function M (v, @) is nonzero only for
[vm| < ve. The data space W, = [[um] < 6,0 < ¢ < 27), in
which the modified data function M(v..,¢) is defined, can be
divided into the four subspaces A, B, C, and D, as shown in
Fig. 2, where A = [lvm| £ ve,,0 < ¢ < 2a(vm) + 2a(v.)),
B = [1vm] € Ve, 20(vm) + 20(ve) € ¢ < 7+ 22(vm)),
c = [l < ve, 7+ 2a(vm) < < 2, and
D = [|m| < ve, 8 < ¢ < 27]. The value of $° is determined by

&°=7+2a(v.). ©)

Using (3), it can be verified that information of M (v, ¢) in subspace
A is redundant to that of M (v, ¢) in subspace C. Similarly, infor-
mation of M (vm, $) in subspace B is redundant to that of M (v, ¢)
in subspace D. Therefore, in principle, the modified data function
M(vm, $) is completely specified by its values in the subspaces A
and B. However, because the boundary between the subspaces B and
-C is a nonlinear function of v,, and ¢ and because each horizontal
line in W, corresponds to a measurement acquired at a particular
angle ¢, the information in subspaces B and C cannot in practice be
determined independently of each other. Consequently, in order to
determine M (v, #) in subspaces A and B, it is necessary to scan
the union AU BUC = [|vm| < v, 0 < ¢ < ®°]. This observation
can also be understood by examining the 2-D Fourier space coverage
of a(7) that is obtained by varying the scanning angle from 0 to ®°.
As shown in Fig. 3, although the disk of Fourier space coverage with

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 21, NO. 4, APRIL 2002

2T

¢

/Q/

0 A
—Xv ~VC 0
Vm

(TR

ve Xvo

Fig. 2. The full-scan data space W< = AU B UC U D contains data in the
angular range [0, 2]. The subspace .A U B U C in [0, $¢] contains all of the
information ncessary for exact reconstruction of the scattering object function
whose 2-D Fourier transform is bandlimited to a disk of radius R.(v.).

2\
5/

Fig.3. The2-D Fourier space coverage of the scattering object that is obtained

by varying ¢ from 0 to ®°. The disk of Fourier space coverage with radius
R=vq \/!1 + 1/x? is incomplete, with the shaded region denoting the missing
data. However, the coverage corresponding to the disk of radius R., which is
defined by (5), is completely specified. In generating the figure, ¢ = 230°
and y = 1 were utilized.

radius R = vo+/1 + 1/x2 is incomplete, the coverage corresponding
to the disk of radius R.(v.) is completely specified. Therefore, in
order to exactly reconstruct a°(+) whose 2-D Fourier transform
A¢(?) is bandlimited to a disk of radius R.(v.), only measurements
corresponding to view angles in [0, ®°] are required. Alternatively,
for an arbitrary scattering object a(7) and specified ¢ > =, one
can readily reconstruct a®(7), which is a low-pass filtered version of
a(7) whose 2-D Fourier transform is bandlimited to the disk of radius
R.(v.), where the value of the data cutoff frequency 0 < v. < xv0o
is determined by (6).

A plot of &€ versus v, /vo for plane- and cylindrical-wave illumina-
tion is shown in Fig. 4. As expected, the maximum scanning angle $°
is a monotonically increasing function of the data cutoff frequency v..
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Fig. 4. A plot of ®¢ versus v. /v, for x = 1 (solid line) and x = 0.5 (dashed line).

The nonlinear shape of the curves indicates the scanning angle can be
reduced from ¢min (e.g., by 30°) with little loss of resolution in the re-
constructed image. Also, the fact that the plane-wave (x = 1) curve is
everywhere higher than the cylindrical-wave (x = 0.5) curve reflects
the fact that the angular scanning requirements of plane-beam DT are
more restrictive than for fan-beam DT [5].

IV. SHORT-SCAN RECONSTRUCTION ALGORITHMS FOR LIMITED-VIEW
DT

Although the data AU B U C in Fig. 2 contains all of the informa-
tion necessary for reconstruction of a°(7), subspaces A and C contain
redundant information that needs to be properly normalized in the re-
construction process. This can be achieved by introducing a weighted
modified data function as [4], [5]

M (v, ) = W (Vm, ) M (Vim, &) Q)

where w(vm, ¢) satisfies

W (Vmy 8) + W (~Vm, ¢ + 7 — 20) = 1 (82)
everywhere in the data space W,
W (Vm, @) =1 (8b)
in subspace B and
w(vm,¢) =0 (8c)

inthe subspace {D U [{vm] > vc,0 < ¢ < 27]}. The image a°(¥) can
be reconstructed using a short-scan FBPP (SS-FBPP) reconstruction
algorithm given by

(w) I A G !
0= [ [7 st m,9)
¢=0 vm:—ul.y

X exp [j21r sgn (Vm)” -’;i"; +(v' - Vo)2TCOS(¢-— a— 9)]

X dvmdé )]

which reduces to the full-scan fan-beam FBPP algorithm [5] when
®° = 27 and w(vm,¢) = 1/2. Note that different choice for
w(vm, @) that satisfy (8), in effect, specify different SS-FBPP
algorithms.

V. NUMERICAL RESULTS

To validate the theoretical results above, we considered a numerical
phantom containing two elliptical disks whose 2-D Fourier transform
was approximately bandlimited to a disk of radius Rc(v. = 0.45v0)
[see (5)]. Data sets of simulated scattered fields were generated using
the plane-wave FDP theorem (i.e., x = 1) and using various values for
®<. We reconstructed images, which are shown in Fig. 5, from these
data sets using the conventional FBPP and SS-FBPP algorithms. The
SS-FBPP algorithm was specified by a weighting function w(vm, @)
that took on the values 1/2, 1, 1/2, and 0, in the data subspaces A, B, C,
and D, respectively. Fig. 5(a) shows images reconstructed by use of
the FBPP algorithm (left) and SS-FBPP algorithm (right), using data
sets corresponding to ®° = 2z and ®° = ¢min(x = 1) = 37/2,
respectively. It is observed that both images appear virtually identical,
reflecting the fact that both of these data sets contain the complete in-
formation about the scattering object.

Fig. 5(b) shows images reconstructed by use of the FBPP algorithm
(left) and SS-FBPP algorithm (right), using a data set corresponding
to $° = 7 + 2a(0.4510)(~ 207°). Clearly, the image reconstructed

using the FBPP algo;iilun is distorted and contains artifacts. However,
the image reconstructed by use of the SS-FBPP algorithm appears cor-
rect and virtually identical to the images shown in Fig. 5(a). This con-
firms our assertion that the SS-FBPP algorithms, which utilize in the
angular range [0, $°], can exactly reconstruct a scattering object a®(+)
whose 2-D Fourier transform A°(#) is bandlimited to a disk of radius
R.(v.), where v. and ®° are related by (6).

Fig. 5(c) shows images reconstructed by use of the FBPP algorithm
(left) and SS-FBPP algorithm (right), using a data set corresponding to
®° = 7 + 2a(0.25v0) (=~ 195°). Note that because the 2-D Fourier
transform of a(#) has support on the disk or radius Rc(vc = 0.45v0),
the measurements in the angular range [0, $° = 195°] do not com-
pletely specify the scattering object (i.e., the disk of coverage in 2-D
Fourier space with radius R.(v. = 0.45»0) will not be completely
filled in.) As expected, the image reconstructed using the FBPP al-
gorithm is blurred, distorted and contains artifacts. The image recon-
structed using the SS-FBPP algorithm also appears blurred, but does
not contain any noticeable distortions or artifacts. This confirms our
assertion that, when the 2-D Fourier transform of a scattering object
a(7) is not bandlimited to a disk of radius R.(v.), the SS-FBPP algo-
rithms that utilize the measurements corresponding to view angles in
[0, ] (where v, and ®€ are related by (6)) can reconstruct a low-pass
filtered version of a(7) whose 2-D Fourier transform is bandlimited to
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(b)

(c)

Fig. 5. Images reconstructed using the FBPP and SS-FBPP algorithms for
various simulated data sets. See the text for a detailed description.
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the disk of radius R.(v.). In this particular example, the 2-D Fourier
transform of the image reconstructed by use of the SS-FBPP algorithm
is bandlimited to a disk of radius R.(.25/.45 v.).

VI. SUMMARY

We demonstrated previously [4], [5] that in 2-D DT employing
plane-wave or cylindrical-wave sources, one can exactly reconstruct
the scattering object from a minimal-scan data set acquired using view
angles only in {0, ¢min], where 7 < ¢min < 3m/2 is a specified
function of the measurement geometry. In this study, we have demon-
strated that when measurements are available only for view angles in
[0, ®°], where 7 < $° < @min, a simple relationship exists between
the maximum scanning angle $° and the image resolution when a
FBPP algorithm is employed to reconstruct the image. By properly
weighting the measurement data, a low-pass filtered approximation
of the scattering object that is free of conspicuous artifacts can be
obtained from the measurements corresponding to view angles in
[0, #°). When the scattering object is sufficiently bandlimited, it
can be exactly reconstructed. This observation is practically useful,
because it provides a convenient mechanism for regularizing the
severely ill-posed limited-view DT reconstruction problem; when the
maximum scanning angle $° is greater than =, a stable reconstruction
can always be performed by sacrificing spatial resolution in the recon-
structed image. It can be demonstrated that the statistical properties
of the SS-FBPP algorithms are qualitatively similar to those of the
minimal-scan FBPP reconstruction algorithms investigated previously
[5). In the limited-view radon transform inversion problem [9], an
analogous regularization mechanism does not exist and some sort of a
priori information regarding the object function is generally required
to effectively regularize the problem.

Because we have assumed a 2-D imaging geometry in this study, the
developed SS-FBPP reconstruction algorithms may be useful for appli-
cations in which out-of-plane scattering is not significant. In diffuse-
photon density wave tomography, the wavenumber is complex-valued
and the FDP theorem describes a mapping between the data function
and a set of complex-valued frequencies of the scattering object func-
tion’s Fourier transform. The extension of the concepts and techniques
introduced in this correspondence to the case where the wavenumber
is complex-valued and to the three-dimensional reconstruction problem
represent important topics for future research.
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ABSTRACT: It is widely believed that measurements from a full
angular range of 2 are generally required to exactly reconstruct a
complex-valued refractive index distribution in diffraction tomography
(DT). In this work, we developed a new class of minimal-scan recon-
struction algorithms for DT that utilizes measurements only over the
angular range 0 = ¢ =< 37/2 to perform an exact reconstruction.
These algorithms, referred to as minimal-scan estimate-combination
(MS-E-C) reconstruction algorithms, effectively operate by transform-
ing the DT reconstruction problem into a conventiona! x-ray CT re-
construction problem that requires inversion of the Radon transform.
We performed computer simulations to compare the noise and nu-
merical properties of the MS-E-C algorithms against existing filtered
backpropagation-based algorithms. © 2002 Wiley Periodicals, Inc. Int J
Imaging Syst Technol, 12, 84-91, 2002; Published onfine in Wiley InterScience
(www.interscience.wiley.com). DOI 10.1002/ima.1 0014

Key words: topographic reconstruction; diffraction tomography;
wavefield inversion

. INTRODUCTION

In diffraction tomography (DT), a scattering object is interrogated
using a diffracting acoustical or electromagnetic wavefield, and the
scattered wavefield around the object is measured and used to
reconstruct the refractive index distribution of the scattering object.
There are numerous potential applications of DT that can be found
in various scientific fields (Andre et al., 1995; Tabbara et al., 1988;
Maueller et al., 1979; Kino, 1979; Devaney, 1984; Robinson, 1984).
Recently, there has also been considerable interest in using DT to
perform coherent x-ray imaging using third-generation synchrotron
sources {Cheng and Han, 2001). Unlike the x-rays used in computed
tomography (CT) that travel along straight lines, the radiation em-
ployed in DT has to be treated in terms of wavefronts and fields
scattered by inhomogeneities in the object. In DT, the interaction
betweern the incident wavefield and the object medium is governed
by the inhomogeneous Helmholtz equation. Using a weak-scattering
approximation, the inhomogeneous equation can be analytically
solved (Wolf, 1969; Mueller et al., 1979) to obtain a linear relation-
ship between the scattered field and the refractive index distribution.
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(V) 312-567-3926, (F) 312-567-5707, Email: anastasio@iit.edu.

© 2002 Wiley Periodicals, Inc.

This relationship has been used to develop DT reconstruction algo-
rithms such as the well-known filtered backpropagation (FBPP)
algorithm (Devaney, 1982), which is a generalization of the filtered
backprojection (FBPJ) algorithm of x-ray CT.

It is widely believed that measurements from a full-angular
range of 27 around the scattering object are generally required to
exactly reconstruct a complex-valued refractive index distribu-
tion (Devaney, 1982). However, we have recently revealed that
one needs measurements only over the angular range 0 = ¢ <
3m/2 to perform an exact reconstruction, and we developed
minimal-scan filtered backpropagation (MS-FBPP) algorithms to
achieve this (Pan and Anastasio, 1999). A useful characteristic of
the MS-FBPP algorithms is their ability to decrease the data
acquisition time by at least 25% over conventional (full-scan)
algorithms. They can also reduce artifacts due to movement in or
temporal fluctuations of the scattering object. Furthermore, in
certain practical situations, it may be impossible to acquire
measurements over a full 27 angular range.

A new class of reconstruction algorithms has recently been
developed for full-scan DT (in other words, DT employing mea-
surements over a full 27 angular range). These algorithms, referred
to as estimate-combination (E-C) reconstruction algorithms (Pan,
1998; Anastasio and Pan, 2000b; Anastasio and Pan, 2000a), effec-
tively operate by transforming the DT reconstruction problem into a
conventional x-ray CT reconstruction problem that can be efficiently
solved using the filtered backprojection (FBPJ) algorithm. The E-C
reconstruction algorithms are more computationally efficient than
the FBPP algorithm, and also provide a flexible framework for
imposing unbiased regularization.

Because the E-C reconstruction algorithms involve a Fourier
series expansion of the data function that is acquired over the
angular range 0 < ¢ < 21, they cannot be applied directly to the
minimal-scan problem where measurements are only acquired over
the angular range 0 = ¢ = 37/2. Because of the potential advan-
tages of the E-C reconstruction algorithms, it is important to gen-
eralize them to the minimal-scan situation. In this work, we devel-
oped minimal-scan E-C (MS-E-C) reconstruction algorithms for DT.
We performed computer simulations to compare the noise and
numerical properties of the MS-E-C and MS-FBPP algorithms. Our
results quantitatively demonstrate that the MS-E-C algorithms pos-




Incident plane wave

Figure 1. The classical scanning geometry of 2D DT. The insonifying
plane wave propagates along the n axis, and the scattered wave field
is measured along the fine 5 = l. Full-scan and minimal-scan data sets
are obtained by varying the measurement angle ¢ between 0 and 27
or between 0 and 37/2, respectively.

sess statistical and numerical properties superior to those of the
MS-FBPP algorithms.

. BACKGROUND

A. The Fourier Diffraction Projection Theorem. In two-di-
mensional (2D) DT employing the classical scanning configura-
tion, as shown in Figure 1, the scattering object is illuminated by
monochromatic plane-wave radiation of frequency v,, and the
transmitted wavefield is measured along the & axis oriented at a
measurement angle ¢, at a distance n = [ from the origin. From
measurements of the scattered wavefield obtained at various
angles ¢, one seeks to reconstruct the scattering object function
a(7), which is related to the refractive index distribution n(r, 8) by
a(r, ) = n?(r, ) — 1.

At a measurement angle ¢, the scattered data are measured along
the line m = I, as shown in figure 1. Let U(v,,, ¢) to denote the
1D Fourier transform of the measured scattered data with respect to
£. For convenience, we define a modified 1D Fourier transform of
the scattered data as

v o
M(v,, ¢) = U(v., $) AT, © A 1)

where v = V2 — 12, and |v,| = v,. The quantities on the
right-hand side of equation 1 are known or can be measured.
Therefore, we will treat M(v,,, ¢) as a measurable data function.
Under the Born approximation (Mueller et al., 1979), the Fourier
diffraction projection (FDP) theorem (Mueller et al., 1979) can be
derived, which is mathematically stated as :

Mv,, ) = j f a(F)e Pt/ g g |y, | < g,
= 0 if v, > v,
@)

where the polar coordinates (r, ) and the rotated coordinates (£, 1)
are related through é = r cos(d — 6) and n = —r sin(¢ — 8). The
FDP theorem indicates that M(v,,, ¢) provides the values of the 2D
Fourier transform of a(7) along the semi-circular arc AOB of radius
v, as shown in figure 2.

B. Minimal-Scan Filtered Backpropagation Algorithms.

The widely used filtered backpropagation (FBPP) algorithm (Dev-
aney, 1982) is mathematically expressed as

. 1 27 w
a(r) = E f
¢=0

Y=g

Vo ] '
_V—' l VmIM( Vs ‘{b) T2 dvm dd’v

3)

where v, = j(Vv3 — vi — v). When », — =, the FBPP
algorithm reduces to the filtered backprojection (FBPJ) algorithm of
x-ray CT. The FBPP algorithm generally requires full knowledge of
M(v,,, ¢) in the data space W = [|v,,| = v,, 0 = ¢ = 2], for
exact reconstruction of the generally complex-valued object func-
tion. We will refer to such full knowledge of M(v,,, ¢) as a full-scan
data set. The full-scan data space W can be decomposed into four
subspaces, s, B, 6, and D, where & = [|v,,| = vy, , 0= ¢ =
20+ w2, B ={v,] =vy 72+ 20=<¢ =7+ 20a], 6
= [yl = v T+ 2a=¢ =3m2]and D = [[v,| = v,
37/2 = ¢ = 2], where o = sgn(v,,)arcsinV'v}, — v2/(2v,). A
schematic of this partitioning of the data space is given in figure 3.
Using the FDP theorem, it can be shown (Pan and Kak, 1983) that
M(v,, ¢) = M(—v,,, & + m — 2a). Therefore, the information
contained in subspace & is redundant to that contained in subspace
%, and the information contained in subspace & is redundant to that
contained in subspace @. We have demonstrated (Pan and Anasta-
sio, 1999) that it is possible to exactly reconstruct the object function
using only knowledge of M(v,,, ¢) in the subspace 4 = A U B

B

Figure 2. The FDP theorem states that M(v,,, ¢) is equal to the 2D
Fourier transform of a(f) along a semi-circle AOB that has a radius of
v and is centered at v, = v,.
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Figure 3. The subspaces o, B, 6 and @ in the complete DT data
space.

+1

U% =y, = v, 0= ¢ = 3n/2], which we refer to as a a
minimal-scan data set.

Although the minimal-scan data set M contains all of the infor-
mation necessary for exact reconstruction of the scattering object
function, the redundant information contained in the subspaces o
and € needs to be properly normalized in the reconstruction process
(Pan and Anastasio, 1999). The MS-FBPP algorithms operate by
first normalizing such partially redundant information by generating
an appropriately weighted minimal-scan data set M'( v,,, ¢) and
subsequently using the FBPP algorithm described by equation 3
(scaled by a factor of 2), to exactly reconstruct the image. The
weighted minimal-scan data set is given by (Pan and Anastasio,
1999)

M'(v,, ¢) = w(v,, &IM(v,, $), 4
where w(v,,, ¢) is a function of v,, and ¢, which satisfies
w(v,, ) + w(-v,, ¢+ 7 —2a) =1 (52)

in complete data space W',

w(v,. ¢) =1 (5b)

in subspace %, and

w(v,. $) =0 (5¢)
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in subspace 9. Although the forms of w(v,,, ¢) in subspaces % and
@ are completely specified by equations 5b and 5c, respectively, the
explicit forms of w(w,,,, ¢) in subspaces & and € are unspecified for
the moment. In principle, one can choose different w(v,,, ¢) in
subspaces & and € as long as these w(v,,. ¢) satisfy equation Sa.

lil. MINIMAL-SCAN ESTIMATE-COMBINATION
ALGORITHMS

The previously derived (full-scan) E-C reconstruction algorithms are
more computationally efficient than the (full-scan) FBPP reconstruc-
tion algorithms, which involve a depth-dependent filtering operation
(backpropagation). Accordingly, we expect that the MS-FBPP algo-
rithms, which use the FBPP algorithm to reconstruct the final image
from the weighted data function M'(v,,, ¢), will also be less
computationally efficient than the E-C reconstruction algorithms.
Because they will involve fewer and less complicated numerical
operations, we also expect that the MS-E-C algorithms will be
minimize the propagation of data noise and errors as compared to
the MS-FBPP algorithms. The full-scan E-C reconstruction algo-
rithms (Pan, 1998; Anastasio and Pan, 2000b) involve a Fourier
series expansion of the data function M(v,,, ¢), which requires
knowledge of M(v,,, ¢) over an angular range of 2, and therefore
can not be directly applied to the minimal-scan data set containing
only measurements in the range 0 < ¢ < 37/3. Below, we develop
minimal-scan E-C (MS-E-C) reconstruction algorithms that can be
directly applied to the minimal-scan data set,

A. The Radon Transform. Let p(¢, ¢) and P,(v,) denote the
Radon transform of a(r, 8) and its 2D Fourier transform, respec-
tively. (Here, the 2D Fourier transform is actually a 1D Fourier
transform with respect to £ and a 1D Fourier series with respect to
¢.) From knowledge of p(£, ¢), or equivalently, P,(v,), one can
reconstruct a(r, 6) by use of the computationally efficient and
numerically stable FBPJ algorithm, which is given by

1 27 = = ] ) ’
a(r, 6) = 5 f 2 Piv)e |y e gy 4,
0

—x k=-x
(6a)

For theoretical convenience, the FBPJ algorithm can also be ex-
pressed as

a(r, 6) = 27 Z j"f Pv, ) 2mv,r)v, dv,, (6b)

k=-x =0

where J,( - ) is a Bessel function of the first kind. The MS-E-C
algorithms will operate by estimating P,(v,), or equivalently p(¢,
), from the minimal-scan data set, and using the FBPJ algorithm to
reconstruct the final image a(r, 6).

B. Derivation of the MS-E-C Algorithms. Consider a given
weighting function w(v,,, ¢) in equation 4. The corresponding
MS-FBPP algorithm can be expressed as (Pan and Anastasio, 1999)

1 27 m v() , P a2
a(r, 6) = 3 o [v,IM' (v, dYe?™4 2™ gy dé.

$=0 % vu=~m

Q)




Let M} (v,,
can re-express equation 7 as

a(r, 6)

=
Vo - "
;T l v"'lel?ﬁl}l"£+2" G 2 Mi( Vm) eﬂ\d’ dV,,, d</>

k=—x
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Using the definition y(v,,) = e/ and separating the contribution to
the integral from positive and negative v,,, equation 8 can be
re-written as

1 25 woy ) *
Cl(r, 6) = ij J _(I) Vmeﬂﬁvmg+zﬂv‘m+1k¢ z Mi( Vm) dV,” dd)

14
¢=0 Y v,= k===

1 27 4] v
+ — __?_ ("V )eilﬂ'l',,,§+27rv,.n+jk¢
2 v m

=0 ¥ vu=—m

X > Mi(v,)dv,dé. (9)

P —

Changing v,, to —v,, in the second term in equation 9 and grouping
¢-dependent terms yields

1 w Vo m , .
a(r’ 0) —_ E ;T v, ejZTer§+_27rv,m+jkd> d¢

¢=0

V=0

- L2 [~ v
X 2 Miv,) dv, + 5 f j 7 Vn

= ¢=0 ¥ wy=0

27 =
X j e Pmmtrtmatit go b N Mi(—v,) dv,. (10)

¢=0 k=-%

The integrals in the curly braces of the first and second terms of
- equation 10 can be evaluated (Metz and Pan, 1995) yielding the
expressions 2y, e O] 2marVvE — v2) and
2m(— 1)) y(v,,) "** T (2mrVvE — v2), respectively. Using
this result and the change of variables v, = V7, — vi, (which
implies v, dv, = v /v’ v,dv,), we arrive at

m m

* NAD
a(r, ) =m 2, jt J [YMiw,) + (=D Mi(=v,)]

k=—= v,=0

X e* 1,2y, v, dv,, (11)

where v,, = v,V1 — v2/2v;. Comparison of Eqns. 11 and 6b

indicates that, for 0 < v, = V2,

1
Pv) =3 [YMi(v,) + (=D Mi(= v, (12)

) denote the Fourier series expansion of M'(v,,, ¢). One

and therefore the Radon transform of the scattering object function
a(r, 0) can be estimated from the appropriately weighted minimal-
scan data set. The use of equation 12 to estimate P (v,) coupled with
the 2D FBPJ algorithm to reconstruct a(r, 0) is referred to as a
MS-E-C reconstruction algorithm. In practice, the FBPJ algorithm
described by equation 6a requires knowledge of P,(v,) for evenly
spaced values of v, spanning the range -V2 Vo =Sy, = V2 Vo
in order to be efficiently implemented using the fast Fourier trans-
form (FFT). In this case, the consistency condition (Deans, 1983)
P (v) = (—1)*P,(—v,) can be employed to obtain values of

P, (v,) for negative v,,.

iIV. NUMERICAL SIMULATIONS

We performed simulation studies to evaluate and compare the nu-
merical and statistical properties of images obtained by use of the
MS-E-C and MS-FBPP reconstruction algorithms.

A. Measurement Data. We investigated the statistical proper-
ties of the reconstruction algorithms under near-ideal conditions by
employing a single component scattering object that exactly satisfied
the (first-order) Born approximation. The propagation of determin-
istic artifacts by the reconstruction algorithms under less-than-ideal
conditions was investigated by employing a two component scatter-
ing object that introduced strong and multiple-scattering effects into
the measurement data.

A.1 Single-Scattered (Born) Data and Noise Model. The scat-
tering object function, shown in figure 4, was taken to be a lossless,
uniform cylindrical disk with a diameter of 30 pixels that was
convolved with a symmetric Gaussian function with a standard
deviation of 0.2 pixel. The Fourier transform of the object function
was therefore approximately bandlimited to a circular disk of radius
V2 v, in its 2D Fourier space. It was assumed that the scatterer was
weakly scattering, so that the Born approximation may reasonably
be taken to hold. Therefore, these numerical simulations were de-
signed to investigate the statistical properties of the reconstruction
algorithms rather than the weak scattering model. Minimal-scan data
sets were generated by using the FDP theorem to calculate simulated
scattered field data for 96 measurement angles ¢ that were evenly
spaced between O and 37/2. At each measurement angle, 128
samples were calculated with a sampling increment A& = 1/2v;,
where v, is the frequency of the incident plane wave.

Figure 4. The original scattering object function was formed by
convolving a uniform circular disk with a diameter of 30 pixels with a
circularly symmetric Gaussian function with a standard deviation of
0.2 pixels.
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Table 1. Error values of the reconstructed images shown in Figs. 9-11.

Contrast MS-E-C Error MS-FBPP Error
1.01 12.03 13.68
1.05 51.26 53.70
1.08 115.25 119.13

V. RESULTS

A. Single-Scattered (Born) Data Case. We first used the MS-
E-C and MS-FBPP algorithms to reconstruct the scattering object
function using the simulated noiseless minimal-scan data set. The
images reconstructed using the MS-E-C and MS-FBPP algorithms
are displayed in figures 5a and 5b, respectively. It is observed that,
in the absence of noise, both the MS-E-C and MS-FBPP algorithms
can, with high fidelity, reconstruct the original scattering object
function from the minimal-scan data set.

Using one of the noisy minimal-scan data sets, we used the
MS-E-C and MS-FBPP algorithms to reconstruct the scattering
object function. The noisy images reconstructed using the MS-E-C
and MS-FBPP algorithms are displayed in figures 6a and 6b, re-
spectively. The image reconstructed using the MS-E-C algorithm
(Fig. 6a) appears less affected by the data noise and more closely
resembles the original object than does the image reconstructed
using the MS-FBPP algorithm (Fig. 6b). The local image variance,
which was empirically calculated from the two sets of 250 noisy
images reconstructed using the MS-E-C and MS-FBPP algorithms,
quantitatively confirms this observation. Figure 7 is a plot of the
local variance obtained from the MS-FBPP reconstructed images
divided by the local variance obtained from the MS-E-C recon-
structed images. Clearly, the ratio of the variances is everywhere
greater than one, and near the corners of the reconstructed image is
as great as ten. This quantitatively demonstrates that the MS-E-C
reconstruction algorithms are less susceptible to the effects of data
noise than are the MS-FBPP reconstruction algorithms.

B. Multiple-Scattering Case. Using the MS-E-C and MS-
FBPP algorithms we reconstructed the two component scattering
objects shown in figures 9-11, which correspond to the cases where
the cylinders had refractive index values of n(7) = 1.01, 1.05, and
1.08, respectively. In each case, the image reconstructed by use of
the MS-E-C algorithm (Figs. 9a-11a) appears to contain less pro-
nounced artifacts than does the image reconstructed by use of the
MS-FBPP algorithm (Figs. 9b-11b). This observation is confirmed
by Table 1, which shows that for each value of n(¥) the MS-E-C
algorithm produced images that have lower error values than the
corresponding images produced by the MS-FBPP algorithm. This
quantitatively demonstrates that the MS-E-C algorithms are less
susceptible to multiple-scattering effects and other deterministic
inconsistencies than are the MS-FBPP algorithms. However, as one
would expect, the performance of both algorithms dramatically
deteriorates as the refractive index values increases and the Born
condition (Chen and Stamnes, 1998) is severely violated.

VI. DISCUSSION

Previously we have shown (Pan and Anastasio, 1999) that, in DT
employing the 2D classical scanning geometry, the minimal-scan
data set acquired using view angles only in [0, 377/2] contains all of
the information necessary to exactly reconstruct the scattering object
function. We subsequently developed a class of MS-FBPP algo-
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rithms that were capab'le of exactly reconstructing the scattering
object function from the minimal-scan data set.

In this work, we have developed a novel class of reconstruction
algorithms for the minimal-scan DT reconstruction problem. These
algorithms, referred to as MS-E-C reconstruction algorithms, have
distinct advantages over the MS-FBPP reconstruction algorithms.
Because the FBPJ algorithm used by the MS-E-C algorithms does
not involve a depth-dependent filtering, the MS-E-C algorithms are
more computationally efficient than are the MS-FBPP algorithms.
More importantly, we have quantitatively demonstrated that the
MS-E-C algorithms are less susceptible to data noise, modeling
errors due to the violation of weak scattering conditions, and other
finite sampling effects than are the MS-FBPP algorithms. This result
is consistent with the observation that the MS-FBPP algorithms
involve more complicated numerical operations than do the MS-E-C
algorithms, which may amplify the propagation of noise and errors
into the reconstructed image. Therefore, the use of a MS-E-C
algorithm instead of a MS-FBPP algorithm (using the same weight-
ing function) will generally result in a reduction of the reconstructed
image variance and/or a reduction of the image artifacts.

Recently, non-linear reconstruction algorithms that incorporate
higher-order scattering approximations have been proposed for full-
scan DT (Lu and Zhang, 1996; Tsihrintzis and Devaney, 2000b;
Tsihrintzis and Devaney, 2000a). The generalization of these works
to case of minimal-scan DT is an important task that is currently
under way.
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Abstract

Diffraction tomography (DT) is an inversion technique that reconstructs the refractive index distribution of a weakly scatter-
ing object. In this paper, a novel reconstruction algorithm for 3D diffraction tomography employing spherical-wave sources is
mathematically developed and numerically implemented. Our algorithm is numerically robust and is much more computationally
efficient than the conventional filtered backpropagation algorithm. Our previously developed algorithm for DT using plane-wave
sources is contained as a special case. )
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I. INTRODUCTION

In diffraction tomography (DT), a weakly scattering object is interrogated using a diffracting wavefield,
and the scattered wavefield around the object is measured and used to reconstruct the (low-pass filtered)
refractive index distribution of the scattering object. The principles of DT have been extensively utilized for
developing optical [1,2] and acoustic [3] tomographic imaging systems for biomedical applications.

It is widely known that the filtered backpropagation (FBPP) and direct Fourier (DF) reconstruction algo-
rithms for three-dimensional (3D) DT possess certain limitations [4]. The depth-dependent filtering (back-
propagation) in the 3D FBPP algorithm requires a large number of 2D fast Fourier transforms (FFTs) to be
performed for processing the measured data at each measurement view, which renders the 3D FBPP algo-
rithm extremely computationally demanding. Furthermore, we have shown that (in two-dimensional (2D)
DT) the FBPP algorithm may considerably amplify data noise [5]. The 3D DF algorithms require the use
of a 3D interpolation method to obtain samples on a 3D Cartesian grid in the Fourier space of the scattering
object, upon which a 3D inverse FFT can be employed to reconstruct the scattering object function. Because
the sample density in the 3D Fourier space obtained from the measured data is non-uniform, sophisticated
and computationally demanding interpolation strategies are generally required to avoid producing significant
interpolation errors that would degrade the accuracy of the reconstructed image.

For 3D DT employing plane-wave sources, we have recently developed a new class of reconstruction
algorithms that circumvent the shortcomings of the 3D FBPP and DF algorithms [4]. These algorithms,
referred to as plane-wave estimate-combination (E-C) reconstruction algorithms, effectively reduce the 3D
DT reconstruction problem to a series of 2D X-ray reconstruction problems, and thus greatly reduce the
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large computational load required by conventional 3D DT reconstruction algorithms. Additionally, these
algorithms do not require an explicit 3D interpolation in the Fourier space of the scattering object.

In many imaging applications [1, 6], it may be useful to utilize a diverging spherical-wave rather than a
plane-wave to interrogate the scattering object. Because of the distinct advantages of the E-C reconstruction
algorithms for plane-wave DT [4], it is important to generalize them to DT employing spherical-wave sources.
In this work, we generalize our previously developed (plane-wave) E-C reconstruction algorithms to DT
employing spherical-wave sources and numerically demonstrate the developed algorithm using simulated
data.

II. BACKGROUND

~ We will utilize the model of spherical-wave DT described by Devaney in [7], the scanning geometry of
which is shown in Fig. 1. The case of 3D DT utilizing a plane-wave source can be viewed as a special case
of spherical-wave DT and will be discussed below. The scattering object is illuminated by monochromatic

spherical-wave source located at the position 77 = —S on the 7-axis, emitting a wavefield of the form
( ) eszVOIF‘Sﬁ| ei2mv0r/€2+2%+(8+D)?
Up €,Z,¢ :AOT“““A— A (1)
|7 — SB] \/52 + 22+ (S+D)?

where A, is the complex amplitude, k¥ = 2wy, is the wavenumber, B is a unit vector pointing along the
positive n-axis, and D is the distance of the detector surface from the center of rotation. From the scattered
wavefield measured in the £-z plane oriented at a measurement angle ¢ and located at a distance 7 = D from
the origin, one seeks to reconstruct the scattering object function a(7). The underlying physical property of
the scattering object that is mapped in DT is the refractive index distribution n(7), which is related to the
scattering object function by the equation a(7) = n?(7) — 1.

Let u(¢, z, ¢) denote the measured total wavefield in the -z plane positioned at n = D, as shown in F1g
1. The scattered data is given by

us(gv Z, ¢) = U(f, 2, ¢) - u0(€7 2, ¢)1 (2)

which can be treated as a measurable data function because u(&, z, ¢) can be measured and because uo(, 2, 9)
is assumed known. We can introduce a modified data function

—j2m(v' —vp) us(gaz ¢) |
M(Vi, v, ¢) = 7”/0 v PF, {uo(f,,z %) 3

where 7, ,, {h(¢,2)} = -2-1; T2 h(¢) e_j27T(VmE+sz)d§dz,

S : .
X=\l3TD’ ‘ “4)
and
) , Vh VU
vV = vy — ';?- — ;‘2' (5)

Using paraxiali and weak scattering approximations, Devaney derived [7] the spherical-wave FDP theorem
that is given by

M(pm, v / / me—J2W[-’E‘£+-‘%Z+(V vo)n]d if 12 412 < 22
3y Z) m Z -—

!The paraxial approximation requires that both S and D are much larger than the size of the scattering object.
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=0 if V2 + 02 > X% (©)

Equation 6 states that the modified data function, M (v, v;, ¢), is equal to a semi-ellipsoidal slice, oriented
at angle ¢, through the 3D Fourier transform of the object function (7). In this work we assume the validity
of the first-order Born approximation; the spherical-wave FDP theorem can also be derived based upon the
Rytov approximation by appropriately redefining Eqn. 3 [7].

Equation 6, coupled with a 3D interpolation method, can be used to implement a DF reconstruction algo-
rithm. The 3D FBPP algorithm for plane-wave DT [8] can readily be extended to 3D spherical-wave DT [6]
and is given by [6, 9]

=3[ asf [ Lella-ew +xu)

vZ 4+v2<x?v3
P ,
X M(Um, vz, ¢) @927 CmE=2mm4v23) dy, . dy, )
where y y
;1 Ym ' Yz . 2 2 2
l/m—? z/z—? and v, = ](\/VO—Xz(V,’n + %) — vp).

III. E-C RECONSTRUCTION ALGORITHM

In deriving the E-C reconstructions algorithms for spherical-wave DT, we will modify the procedure em-
ployed for the derivation of the plane-wave DT algorithms described in [4]. Let a(r, 8, z) denote a 3D scat-
tering object function in the cylindrical coordmate system. The X-ray transform, p (£, z, ¢o), of a(r, 0, z) is
defined as

P (6: Z, ¢0) = / a(”’, 07 Z)dna (8)

where ¢, is the projection angle, £ = rcos(¢o—6) and n = —7sin(¢p —6). Equation 8 states that p(&, z, ¢o) is
the geometrical projection of a(r, 8, z) onto the £ —z plane oriented at angle ¢, about the z axis. Consequently,
p(&, 2, y) can be interpreted as a stack of 2D Radon transforms of a(r, 8, z) along the z axis. The combination
of a 2D Fourier transform with respect to £ and z and a 1D Fourier series expansion with respect to ¢¢ of

P(¢; 2, do) is given by

P(va, vs) = / N / plE 2,40 e IE saeves=ikts e i gy, ©)

where the integer & is the angular frequency index with respect to ¢g, and v, and v, are the continuous spatial
frequencies conjugate to £ and z, respectively. As a matter of convenience, we refer to Py (v,, v,) as the “3D
Fourier transform” of p (&, z, ¢¢). Substituting Eqn. 8 into Eqn. 9 and carrying out the integral over ¢, yields

Pr(v,,v,) = (= ])k/ e Jz””’zdz/o /—0 r,0,2) e~ I\ (2mv,r)rdrdd. (10)

Again for convenience, we refer t0 My (v, ;) = & [&" M (Vm, vz, ¢) e ~7%¢ d¢p as the “3D Fourier trans-
form” of the modified data function. Using Eqn. 6 and noting that £ = r cos(¢ — 8) and n = —rsin(¢ — 6)

one can obtain -
Mk (Vim, v2) —/ e 92z dz/ / a(r, 0, z)
2=—00 0= r=0
1 2, . . ,
e vt sin(¢p—0)—j (k-+2mv;, 1 cos(p—0))
x {5 /¢ e dg} r drde, an

where 2, + 2 < x22. Carrying out the integral [10] in the curly brackets in Eqn. 11, one can re-express
My, (U, v.) as




. V;n—l_y k [o° —j27vlz
Mk(Vm,Vz):(‘”])k[—‘——L ]/zz_ooe 32mv22 (o

12 _ .2
1/ I/u

/0 / a(r,9,2) e % Jp(2mry /v — v2) rdr df (12)
where 12, + 12 < x*1

Comparison of Eqns. 10 and 12 yields that for v2, + v2 < x?u2

Pk(VaaV;) = [7(Vm’yz)] Mk(Vma VZ)a (13)
where
A (14)
and
Y~V | (s
Y, vy) = m (15)

The explicit forms of this general relationship in Eqn. 13 are determined completely by the forms of the
relationship between v, and v,, 1mp11ed in Eqn 14. Equation 14 indicates that the condition 2, + 12 < x?%y,
is equivalent to the condition v2 + v/ 2 < v2(1 +1/x?). In order to determine v,, as a functlon of v, and ua,
we must solve for the roots of the fourth order equation

Ot +Co P+ C5 =0, (16)

where the coefficients C; are given by

Cr =201 =) (20 — ¥ = 5) + X,

and

Cs = (2vF — V2 — ;—2)2 — 432 -

2C,

1/2
, , [—024-\/022 —40103] / a7

and

it = e (18)

1/2
’ ’ I:—C2 —V C122 - 450103}

Y Ay

Let vn; = VX2, i = 1,2,3, and 4. For 12 + /> < 13(1 + 1/x?), the two roots v/, and /. , are complex-

valued and therefore not physically meaningful. In the plane-wave case (y = 1), there are only two roots that

are given by [4]
v 42 i
Ui = —Vmp = v = { (V] + V2)[1 - 252 - 2}, (19)

2, .2 2
where v + v; < 21§.
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Therefore, for a given pair of v, and v/, satisfying 0 < v2+1/,%> < ¥2(1+1/x?), Px(vs, v.) can be obtained
from My (v, v,) at Vm1 = Vi, and v, as '

Pk(Va? V;) = [’Y(V;‘nla v, ] Mk(ymla Vz)
[7( L) z)]kMk(Vm>Vz) (20)

and also from My (v, V) at Ve = — 1y, and v, as
Pi(va, 1)) = [V (Um2, V3) "Mk (Vm2, v2)
= (=1 1y (v, )] "M (=, v2). @D

The fact that there are two distinct ways to obtain P(,, ;) from the measured data can be explained by the
existence of a double coverage of the scattering object Fourier space [7]. At a given measurement angle ¢,
the spherical-wave FDP theorem relates the 2D Fourier transform of the modified measured data to the 3D
Fourier transform of a(7) evaluated over a semi-ellipsoid oriented at angle ¢. As the measurement angle ¢
is varied from 0 to 27, two overlapping coverages of the Fourier space are generated, with each coverage
producing one of the relationships described by Eqns. 20 or 21.

Equations 20 and 21 yield two identical values of P(v,, 22,) when the measured data are consistent. How-
ever, when the measured data contain noise, Eqns. 20 and 21 will generally produce different values of
Pi(v,, V). These two values can be combined to obtain a ﬁnal estimate of Py (v,,v.) thathas a reduced noise
level as

P (va, v) = Wk (U, 1) [¥ (Vg V)M (v, v2)
+ (1 = wi(vm, v2)) (— ) [7(ym’ z)] kMk( —Vm, Vz), (22)

where wi (v, v,) is a generally complex-valued combination coefficient. The superscript “w” indicates that

P(“) (va, V) is obtained by use of a combination coefficient wy (v, v,). If Mk(ym, v;) and My(~vp, v,) are
mterpreted as a random variables, then for a given wy (v, v,), Eqn. 22 can be interpreted as an estimation
method for obtammg the ideal sinogram. Because wy(vy,, v,) may be any complex-valued function of v,,, v,
and k, Eqn. 22, in effect, represents an infinite class of estimation methods. An estimate of p(¢, z, ¢o) can be
obtained by taking the 3D inverse Fourier transform of P( “) (Va, v;). For a fixed value of z, the filtered back-
projection (FBP) algorithm of X-ray CT can be employed to reconstruct the corresponding transverse slice
of a(r, 8, z) from p(¢, 2, ¢o). We refer to the combination of Eqn. 22 to estimate Pg") (Vm, V) coupled with
the 2D FBP algorithm to reconstruct transverse slices of a(r, 8, z) as a spherical-wave E-C reconstruction
algorithm for 3D DT.

IV. NUMERICAL RESULTS

We performed numerical simulations to demonstrate the spherical-wave E-C reconstruction algorithm.
We considered a mathematical phantom comprised of two different (uniform) spheres whose 3D Fourier
transforms were approximately bandlimited to a sphere of radius v/21,. Our intention was not to test the
validity of the weak scattering (Born) condition (see the Discussion Section), but rather to demonstrate that
the spherical-wave E-C reconstruction algorithm can accurately reconstruct the scattering object function
from weakly scattered data. We therefore employed Eqns. 3 and 6, along with the analytic expression for
the 3D Fourier transform of a the spheres, to calculate noiseless samples of u,(¢, z, @) over a 128 x 128
detector array at 128 view angles that were evenly spaced over 360°. In generating the simulation data,
we-assumed a scanning geometry with S=100 (arbitrary units) and D=104.0816 that, according to Eqn. 4,
yields x = 0.7. In order to simulate the stochastic nature of noisy scattered data, we created a second
data set, i,(¢, z, ¢), where the measured scattered data were treated as samples of an uncorrelated bivariate
Gaussian stochastic process. When generating 15(, z, ¢), the mean and variance parameters describing the




real (imaginary) component of the stochastic process were set equal to the real (imaginary) values of the
noiseless data u,(¢, z, ). Therefore, at a given position (¢, 2, ¢) in the data space, the magnitude of noise
contained in the real and imaginary components of {i,(&, z, ¢) was proportional to the magnitude of the real
and imaginary components of u,(&, z, ¢), respectively.

We reconstructed three transverse slices of the scattering object by use of the spherical-wave E-C algorithm
specified by wi (v, v;) = % in Eqn. 22. It can readily be shown that when the data noise is uncorrelated,

w = % is a statistically optimal choice in the sense that it minimizes the variance of the estimate Pf:") (Va)s

which in turn, results in a minimization of the global image variance? [4]. For more general noise models, it is,
in principle, possible to derive other optimal forms for w (v, v, ). The true images of the chosen transverse
slices are shown in Fig. 3-(a). The images reconstructed from the noiseless data, shown in Fig. 3-(b), do
not contain any artifacts and accurately represent the corresponding true slices shown in Fig. 3-(a). The
same images reconstructed from the noisy data set are shown in Fig. 3-(c). Although noisy in appearance,
the images are not distorted which confirms that the spherical-wave E-C algorithm are numerically stable.
Out of curiosity, we also reconstructed the same transverse slices by use of our previously developed plane-
wave E-C reconstruction algorithm (that assumes the measurement geometry corresponds to x = 1) and the
noiseless data set. The reconstructed images, shown in Fig. 4, clearly contain artifacts and distortions. This
numerically demonstrates the importance of properly accounting for the wavefield curvature in 3D DT.

V. DISCUSSION

Previously, we developed a novel class of reconstruction algorithms for 3D DT using plane-wave sources.
These algorithms, referred to as plane-wave E-C reconstruction algorithms, had a significant computational
advantage over the conventional 3D FBPP algorithm, and unlike the 3D DF method, did not require an explicit
3D interpolation in the Fourier space of the scattering object.

The use of a plane-wave source may not be feasible in many experimental situations, and it may be more
convenient to interrogate the scattering object using a diverging spherical wave that is produced by a point
source. In this work, we have developed a class of spherical-wave E-C reconstruction algorithms for DT
using spherical-wave sources and measurement geometries that satisfy the paraxial approximation [7]. The
spherical-wave E-C reconstruction algorithms can be viewed as generalizations of the plane-wave E-C re-
construction algorithms, and reduce to the plane-wave E-C algorithms in the special case y = 1. The
spherical-wave E-C reconstruction algorithms possess the same advantages as their plane-wave counterparts.
For example, to reconstruct an N image volume the spherical-wave E-C algorithm requires ~ N3logN nu-
merical operations while the spherical-wave FBPP algorithm described by Eqn. 7 would require ~ N4logN
numerical operations. Unlike DF methods, the spherical-wave E-C algorithms do not require an explicit 3D
interpolation in the Fourier space of the scattering object.

The spherical-wave E-C reconstruction algorithms have been developed using the first-order Born (or Ry-

-tov) weak scattering approximation. In certain applications, the weak scattering approximation may not be
valid and the reconstructed image may contain artifacts. However, the spherical-wave E-C algorithms provide
a natural framework for the incorporation of higher-order scattering perturbatlon approximations [11-13] into
the algorithms.
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FIGURE CAPTIONS

Fig. 1. The classical scanning geometry of spherical-wave 3D DT. A spherical-wave is incident at angle ¢,
and the scattered field is measured in the £-z plane positioned at 7 = D. The measurement angle ¢ is varied
from 0 to 27.

Fig. 2. A plot of vy, as a function of v, and v, as described by Eqn. 17. The plot was generated using x = 0.7
and vy = 7.

Fig. 3. (a) True slices through the numerical phantom. Transverse slices reconstructed from (b) noiseless and
(c) noisy data using a spherical-wave E-C reconstruction algorithm.

Fig. 4. Transverse slices reconstructed from the spherical-wave data function (x = 0.7) using a plane-wave
DT reconstruction algorithm. As expected, the images contain distortions.
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Abstract

In reflectivity tomography, conventional reconstruction approaches require that mea-
surements be acquired at view angles that span a full angular range of 27. It is often,
however, advantageous to reduce the angular range over which measurements are acquired,
which can, for example, minimize artifacts due to movements of the imaged object. More-
over, in certain situations it may not be experimentally possible to collect data over a 27
angular range. In this work, we investigate the problem of reconstructing images from
reduced-scan data in reflectivity tomography. By exploiting symmetries in the data func-
tion of reflectivity tomography, we heuristically demonstrate that an image function can be
uniquely specified by reduced-scan data that correspond to measurements taken over an
angular interval (possibly disjoint) that spans at least 7 radians. We also identify sufficient
conditions that permit for a stable reconstruction of image boundaries from reduced-scan
data. Numerical results in computer-simulation studies indicate that images can be recon-
structed accurately from reduced-scan data.

EDICS Category: 3-TOMO (Computer tomography)

1 Introduction

Reflectivity tomography has been applied to numerous biomedical [1,2] and non-destructive
testing [3] imaging problems. In two-dimensional (2D) reflectivity tomography [4,5], a
weakly reflecting object that is immersed in an acoustically homogeneous background
medium is illuminated with infinitesimally short ultrasonic pulses, and the concomitant
reflected signals are measured as functions of time at each of the multiple source locations.
The task in reflectivity tomography is to reconstruct from such measured data a function
describing the reflectivity distribution within the scattering object’.

In reflectivity tomography, an imaging configuration that acquires data over the com-
plete angular interval of 27 is referred to as a full-scan configuration. Norton derived [4]
an analytic algorithm for reconstructing the object function from data acquired with a
full-scan configuration. In tomographic imaging, however, it is often desirable to minimize
the angular range over which data are acquired. When ionizing radiation is employed,
this can reduce the radiation dose that is delivered to the subject during the imaging pro-
cess. An advantage of reducing the scanning angle, which is also relevant to biomedical
imaging applications employing non-ionizing radiation, is that the time needed to collect
data is reduced, thus diminishing image artifacts and distortions created by movements of

1For simplicity, we refer to the object’s reflectivity function as the object function.




the object during the imaging process. Furthermore, in certain situations it may not be
experimentally possible to collect data over a full angular range of 2.

An imaging configuration that acquires data over an angular interval ®, where 7 <
® < 2m, is referred to as a reduced-scan configuration. It has been shown that one can
accurately reconstruct images from data acquired with reduced-scan configurations in to-
mographic imaging modalities including fan-beam computed tomography (CT) [6] and
single-photon emission computed tomography (SPECT) [7,8]. However, it remains un-
clear whether an accurate object function can be reconstructed from reduced-scan data in
reflectivity tomography.

In this work, we investigate the problem of image reconstruction from reduced-scan
data in reflectivity tomography. A potato-peeler perspective® is proposed for identifying
data symmetries in reflectivity tomography. Using the identified data symmetries, we
heuristically demonstrate that data acquired with reduced-scan configurations in reflectivity
tomography are, in principle, sufficient to specify the object function. We also apply results
from microlocal analysis [10] to investigate the stability of reconstructing image boundaries
from reduced-scan data in reflectivity tomography. '

Norton’s algorithm [4], which can be applied only to full-scan data, cannot accurately
reconstruct images from reduced-scan data. Instead, we propose to use the expectation
maximization (EM) algorithm [11] for reconstruction of the object function from reduced-
scan data. Using computer-simulation studies, we evaluate the numerical properties of
images that are reconstructed from reduced-scan data. The results of these studies indicate
that, under practically relevant conditions, images can be reconstructed accurately from
reduced-scan data. In particular, for reflecting objects and scanning configurations that
may arise in realistic experiments, numerically accurate images can be reconstructed from
reduced-scan data acquired over, e.g., an angular interval of only 7.

2 Data Function in Reflectivity Tomography

In this section, we briefly discuss the data function in reflectivity tomography and summa-
rize Norton’s algorithm [4] for image reconstruction from full-scan data. Let f(r,8) denote a
two-dimensional (2D), bounded, and non-negative object function with compact support on
the disk of radius Ry centered at the origin, for some fixed real number Ry > 0. As shown

2The potato-peeler perspective is conceptually similar to the so-called “layer-stripping” method for
solving the Helmholtz equation, e.g., in impedance imaging [9], in the sense that the object function
is determined layer by layer. However, the mathematical formulation of the potato-peeler perspective
differs entirely from that of the existing “layer-stripping” method [9]. We are currently developing a
mathematical formulation for the potato-peeler perspective for reflectivity tomography and will report
such results elsewhere.




in Fig. 1, the object function is embedded in an acoustically homogeneous background
medium, and an omni-directional point source-receiver is located at the polar coordinates
(R, ¢+) on a circular source-receiver trajectory curve C that encloses the object function.
At time ¢ = 0, an infinitesimally short pulse of sound is emitted from the point source, and
" the wavefield that is backscattered (i.e., reﬂected') from the reflecting object is measured
at the source location as a function of time.

The measured data can, under certain conditions [5], be interpreted as a set of line
integrals of f(r,) defined over all circular arcs (with varying radii) that are centered at
a source-receiver location (R, ¢ + =), where R; < R. If this transmit/receive process is
repeated for all points on C, multiple sets of these line integrals are obtained. These line
integrals can be expressed mathematically as

9, 6) = /027r do /OR’ drr f(r,6)6(/RE+12 —2Rrcos(¢—0) —R—8), (1)

where £ € [-R, R, and the Dirac  function restricts the integration over a circular arc
with a radius R + € > 0 and centered at the point (R,$ + 7) on the curve C. The
reconstruction problem in reflectivity tomography is to determine the object function f(r, 6)
from knowledge of the data function g(&, ¢).

In full-scan reflectivity tomography, because g(¢, @) is measured for all ¢ € [0,27), one
can calculate its Fourier series expansion coefficient as

(@)= [ dbale,9)eIm. ©)

The object function can be expressed as a Fourier series,

f(r,0) = Z falr)e’™?, (3)

n=-—oo

where f,(r) = & [¢" df f(r,0) e77"°. Norton [4] showed that fn(r) (i.e., the object function)
can be determined from knowledge of g,(£) (i.e., the full-scan data g(¢, ¢)) as
[ Jn(r2) n(&)Jo(p2)
falr) = /o dz J, (Rz [/ A 2mp ’ ()

where p = R+ £ and J,,(-) is the nth-order Bessel function of the first kind. Therefore,
Eqns. 2, 3, and 4 provide a recipe for reconstruction of the object function from full-scan
data.

3 Data Symmetry and Reduction of Scanning Angle

Data symmetries have been exploited to demonstrate whether accurate object functions
can be reconstructed from reduced-scan data in other tomographic imaging modalities
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(e.g., fan-beam CT [6] and SPECT [7,8]). Below, we use the Radon transform of an object
function as a data function to illustrate a data symmetry. The Radon transform of an
object function f(r,6) is defined as

ped)= [ a0 [ drri(r,0) 86~ reos(d ~0)) G

where £ € [—Ry, Ry], and ¢ is the projection angle. A symmetry of the Radon transform
exists because its values at conjugate views are identical, i.e.,

p(§, 8) = p(—¢&, ¢+ ). (6)

Such a symmetry suggests that the full-scan Radon transform contains redundant infor-
mation. Knowledge of the Radon transform acquired over [0,7) can be used for recon-
structing an image exactly because knowledge of the Radon transform corresponding to
the un-measured angular intervals is fully specified by Eqn. 6. Inspection of Eqn. 1 in-
dicates that the data function g(¢, ) in reflectivity tomography possesses no symmetry
analogous to that of the Radon transform in Eqn. 6. However, we reveal below that the
data function g(£, ¢) does admit symmetries and that such symmetries can be exploited to
identify redundant information in full-scan data in reflectivity tomography.

3.1 Potato-Peeler Perspective for Reflectivity Tomography

Although the data function in Eqn. 1 does not admit a simple symmetry analogous to
that of the Radon transform in Eqn. 6, the fact that the imaging transform in Eqn. 1 is
linear and that f(r,0) has a compact support can facilitate the explicit identification of
data symmetries in reflectivity tomography. We generalize the potato-peeler perspective,
which was developed previously for analyzing data symmetry in SPECT [12], to investigate
data symmetries in reflectivity tomography. It should be emphasized that this perspective,
‘to be presented below, is not intended as a mathematically stable and computationally
practical reconstruction algorithm. Instead, it is used only for heuristically revealing data
symmetries in reflectivity tomography.

Without loss of generality, as shown in Fig. 2, we assume that the non-zero support of
f(r, ) is a disk of radius Ry centered at the origin, i.e., f(r,6) # 0 forr < R; and f(r,8) =0
for 7 > Ry. (The procedures and discussion to be presented below can, however, readily be
modified to address any compactly supported object functions.) We use L(£, ¢) to denote
the circular integrating line in Eqn. 1.

At a given view angle ¢g, one can identify a value &, > 0 such that g(&nqez, o) # 0
and g(§, ¢o) = 0 for £ > &nep- The assumption on the support compactness of f(r,6)
indicates that

Emaz = R_f- | (7)
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Therefore, one can determine R from knowledge of &maz. Conceptually, we treat f(r,0) as
a collection of weighted 2D Dirac delta functions.?® Because the integrating line L(&0z, $0) -
intersects f(r,6) only at the single point (Ry, ¢o) (i.e., point B in Fig. 2a), Eqn. 1 reduces
to '

g(gma:m ¢0) = f(Rf7 ¢0) (8)

On the other hand, at the conjugate view angle ¢ + 7, one can identify a same value
maz > 0 such that g(—&maz, do+7) # 0and g(—¢&, ¢o+7) = 0for £ > &gz In this situation,
the integrating line L(—&naz, $o + 7) also intersects only at a single point (Ry, ¢o) (i-e.,
point B in Fig. 2a) on the outermost edge of the support. Again, as a result, Eqn. 1
reduces to

g(_gmaza ¢0 + 71') = f(Rf’ ¢0) (9)

Therefore, the object function f(r,6) at the outermost point (Ry, ¢o) (i.e., point B in Fig.
2a) can be specified completely by either one of the two measurements g(&maz,$o) and
( fmam ¢0 + 7T)
The component of f(r,8) correspondmg to the point (Ry, @) produces (via. Eqn. 1) a
component of the data function given by

gB(g, (b) = g(E’mama ¢0)I(€) ¢)’ . (10)

where I(, ¢) is an indicator function defined as I(§, ¢) = 1 for { = [R}+R*—2R; R cos(¢o—
#)]? — R and I(£,¢) = 0 otherwise. As shown in Fig. 2b, the function I(¢, ¢) specifies
the loci of points in the data space that receive a contribution when f(r,8) in Eqn. 1 is
replaced by f(Ry, ¢o)w‘—‘@' From g(¢,¢) and gg(&, ¢), one can obtain a new data
function as l

which contains no contributions from point B in the object function. In a similar manner,
all points (e.g., points A and C) on the outermost edge of f(r,6) can be determined and
“peeled away”, and their contributions to the data function g(£, ¢) can be removed; each
time forming a new data function. The next set of points at the interior of the object
function will be exposed. By the same procedure, the next layer of the object function can
be determined and “peeled away”, and their contributions to the new data function can
be removed. By repeating this procedure, one can determine f(r,6) by completely peeling,
layer by layer, the object function away.

ie., f(r,0) = foz‘ﬂ' de' fRf dr'r' £(r',0") 3(r—r 26(9 012




3.2 Reduction of Scanning Angle

From Eqns. 8 and 9, one can readily identify a symmetry of the data function as

g(gmam, ¢0) = g("'&mam, ¢0 + 77')- | (12)

Furthermore, using the potato-peeler perspective described above, one can identify a sym-
metry of §(&, ¢) as ~
| 9(&m; 8) = §(—m, ¢+ 7), | (13)

where §(&m, @) # 0 and §(—&m, ¢ + 1) # 0 for 0 < &n < &mas, and g(€, ¢) = 0 for || > &n.
The symmetry condition in Eqn. 13 indicates that any point of the object function can

be specified by the values of a (processed) data function §(¢,$) at conjugate views. As a
result, the potato-peeler perspective suggests that the object function may be specified by
knowledge of the measured data g(¢, ¢) available over ¢ € [0, 7). We refer to a scanning
configuration that acquires g(&, ¢) over ¢ € [0,7) as the short-scan configuration. More
geriera_lly, the potato-peeler perspective indicates that an object function may be specified
by knowledge of data g(£, #) measured over ¢ € ®, where ® is any proper subset of [0, 27)
such that ¢’ € ® OR ¢' + 7 € ®, for all ¢’ € [0, 7). We refer to a scanning configuration
that acquires data at ¢ € ® as a w-scheme configuration [8]. Obviously, the short-scan
configuration can be viewed as a special case of the m-scheme configurations. The data
symmetries above indicate that full-scan data in reflectivity tomography contain redundant
information that can be exploited for reducing the angular range over which measurements
need to be acquired. .

By use of the potato-peeler perspective, it was revealed heuristically above that an ob-
ject function f(r,6) in reflectivity tomography can be specified uniquely by knowledge of
short-scan or m-scheme data. This is consistent with the result of an analysis of a family of
Radon transforms over circles [13]. One can use principles from microlocal analysis [10,14],
as described in Appendix A, to derive theoretically sufficient conditions for stable recon-
struction of boundaries (more generally, singularities) in the object function. One of the
sufficient conditions suggests that all boundaries in the object function can stably be recon-
structed from data acquired over [0, 37/2). Also, as discussed in Appendix A, depending
upon the boundary locations within an object function, it is theoretically possible that all
boundaries can stably be recovered from short-scan or m-scheme data. More important, as
the results of numerical studies below show, under realistic practical conditions (e.g., in the
presence of data noise), images reconstructed from short-scan or w-scheme data generally
appear to be comparable to those obtained from full-scan data.




4 Results

Using simulation studies, we numerically investigated the accuracy of images reconstructed
from reduced-scan data in reflectivity tomography.

4.1 Data and Reconstruction Algorithm

We used three different numerical phantoms, which are shown in Fig. 3, to generate
simulated measurement data corresponding to the imaging transform in Eqn. 1. The
phantom in the left panel of Fig. 3 is comprised of three 2D Gaussian functions, representing -
a smooth object function containing no boundaries, whereas the phantoms in the middle
and right panels of Fig. 3 contain boundaries and complex structures. We refer to the
two phantoms in the left and middle panels of Fig. 3 as the Gaussian phantom and the
ellipse phantom, respectively. The phantom on the right panel, known as the Shepp-
Logan phantom, is widely used in the medical imaging community. When we simulated
the measured data, the phantoms were centered at the origin of the z-y coordinate system,
which was also the center of the circular source-receiver trajectory (see Fig. 1). The matrix
size of the reconstructed images is 128x128.

It remains unclear whether analytic algorithms exist for accurate reconstruction of im-
ages from reduced-scan data. In this work, we use the EM algorithm [11] for image recon-
struction. For notational convenience, let z = (7,0) and y = (&, ¢) denote 2D vectors in
the image and data spaces, respectively. Equation 1 can then be expressed as

= /D _dah(z,y) f(z)  VyeD, (14)

where the real and non-negative functions g(y) and f(z) denote the data and object func-
tions that are supported on the domains D, and D,, respectively. (For instance, for a
short-scan configuration, Dy = {y| — R < £ < R,¢ € 7}.) The kernel h(z,y) of the
imaging transformation is given by

h(z,y) =46 ([r2 + R? - 2rRcos(¢ — 0)]% - R-— §> . (15)

We use

f(n+1) (II)) — __Ln)(_m)_/ d h(x,y)g(y) (16)

| Io, dyh(z,9) Jo, Y I, dzh(z,y) f@()
as the estimate of the object function, where n is the number of iterations. The initial
image f(®(z,y) is often chosen as a non-zero constant function. The EM algorithm has
been shown to yield the maximization-likelihood solution to Eqn. 14 when the data function
g(y) contain Poisson noise [15]. From a practical point of view, the EM algorithm is easy
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to implement because it involves only forward and backward transformations between the
image and data spaces. In our work, in an attempt to enhance the computational efficiency,
we utilized an ordered-subsets [16] implementation of the EM algorithm.

4.2 Reconstruction of Smooth Object Functions

We first investigated the accuracy of reconstructed images of a smooth object function con-
taining no boundaries. To do so, we used the Gaussian phantom in Fig. 3 to generate three
noiseless data sets containing measurements over the angular ranges of [0, 7/2), [0, 37/4),
and [0, 7). The radius of the source-receiver trajectory was taken to be R = ry, where rg
represents half of the image-array size. From the three data sets, we reconstructed images
and, in each case, calculated a difference image between the reconstructed image and the
Gaussian phantom.

In Fig. 4, we display profiles through the three difference images at z = 64 and y = 44
obtained from the [0,7/2), [0,37/4), and [0, 7) data sets, respectively. It can be observed
that the difference profiles obtained from the [0,7) data set are almost zero. Because
the Gaussian phantom studied has no obvious symmetries, such an observation appears
to suggest that an accurate image of a smooth object function can be reconstructed from
short-scan data.? It can also be seen in Fig. 4 that the difference profiles calculated from
the [0,7/2) and [0,37/4) data sets are significantly different from zero, suggesting that
accurate images cannot be reconstructed from data acquired over angular intervals less
than 7.

4.3 Reconstruction of Images Containing Boundaries

For the ellipse and Shepp-Logan phantoms that contain boundaries, we generated simu-
lated data sets containing measurements over angular ranges [0, 7/2), [r, 27), [7/3,27/3]U
[r,47 /3] U [57/3,2x], [0,37/2), and [0,27), as shown in Fig. 5. The second and third
configurations correspond to short-scan and m-scheme configurations, whereas the last con- ‘
figuration is the full-scan configuration. For each of the ellipse and Shepp-Logan phantoms
and for each of the scanning configurations in Fig. 5, we generated two sets of noiseless data
by use of two circular source-receiver trajectories with different radii. Using these noiseless
data as the means, we generated the corresponding noisy data by adding Gaussian noise.
In Fig. 6, we display images reconstructed from noiseless and noisy data acquired over
[0,7/2) (see the configuration in the far left panel of Fig. 5). Clearly, all of the images
contain significant distortions, suggesting that images cannot be reconstructed accurately

4In reflectivity tomography, the stable reconstruction of smooth components of an object function can
be deduced by exploiting a correspondence between the Sobolev wavefront sets of the data and object
functions [17,18].




from data acquired over an angular interval less than 7. This observation is consistent with
that for smooth images above.

For the ellipse phantom, we show in Figs. 7 and 8 images reconstructed from data
acquired over angular ranges [m,2r), [7/3,27/3] U [x,4n/3] U [67/3,2x], [0,37/2), and
[0,27). The radii of the source-receiver trajectory for obtaining the results in Figs. 7 and
8 were 19 and 3ry, respectively, where ry represents half of the image-array size. Images
reconstructed from noiseless data are shown in the first columns in Figs. 7 and 8. The
overall visual quality of the noiseless images reconstructed from short-scan or m-scheme
data appears comparable to that obtained from full-scan data. In particular, for the case
of R = 3ry (Fig. 8), which may correspond to a typical realistic experimental geometry,
the noiseless images reconstructed from the short-scan and 7-scheme data appear to be
virtually identical to that reconstructed from the full-scan data. Images in the second, third,
and fourth columns in Figs. 7 and 8 were reconstructed from data containing Gaussian
noise with standard deviations of 1, 2, and 4, respectively. These noisy images appear
distinct, but are not qualitatively different (for a given noise level). Differences in the
statistical characteristics of the images (i.e. the appearance of the image noise) are to be
expected because the same reconstruction algorithm is applied to different noisy data sets.
Furthermore, the full-scan data contain redundant information that is not present in the
short-scan or m-scheme data, which serves to effectively average out certain components of
the data noise.

For the Shepp-Logan phantom, we show images in Figs. 9 and 10 reconstructed from
data acquired over angular ranges [, 27), [7/3, 27r/3]U[r, 47/3]U [57/3, 27], [0, 37/2), and
[0, 27), respectively. The radii of the source-receiver trajectory for obtaining the results in
Figs. 9 and 10 were 7y and 3rg, respectively. Images reconstructed from noiseless data are
shown in the first columns of Figs. 9 and 10, and images in the second, third, and fourth
columns in Figs. 9 and 10 were reconstructed from data containing Gaussian noise with
standard deviations of 1, 2, and 4, respectively. Again, for images in Figs. 9 and 10, one
can make observations similar to those for images in Figs. 7 and 8. The overall visual
quality of the images reconstructed from short-scan or m-scheme data appears comparable
to that obtained from the full-scan data, and images reconstructed from various noisy data
sets appear qualitatively similar (for a given noise level).

According to microlocal analysis [10], certain image boundaries may not theoretically be
reconstructed stably from short-scan or m-scheme data. For example, in the short-scan case
in which the source-receiver trajectory is within the lower half plane (see the configuration
in the second panel in Fig. 5), the microlocal analysis suggests that vertical boundaries
in the ellipse phantom that reside in the upper half plane cannot be reconstructed stably.
This is because the normal vectors of such vertical boundaries do not intersect the source-
receiver trajectory in the lower half plane. From the noiseless image in the far left panel of
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the first row in Fig. 7, one can see artifacts near the vertical boundaries of the square region
in the upper half. However, it is interesting to observe that such artifacts do not appear to
be prominent. Furthermore, as the radius of the source-receiver trajectory increases, such
artifacts become almost undetectable numerically, as confirmed by the virtually artifact-
free noiseless images in the far left panels of the first and second rows in Fig. 8 for the case
R = 3rq.

The boundaries in the images in the far left panels of the third rows in Figs. 7-10 appear
identical to those displayed in the far left panels of the fourth rows in Figs. 7-10. This
confirms our assertion (see Appendix A) that image boundaries can stably be reconstructed
from data acquired over an angular range of 37/2. As images in the second, third, and
fourth columns in Figs. 7-10 show, for a given noise level, image boundaries reconstructed
from noisy data acquired with the reduced-scan and full-scan data appear qualitatively
similar.

For completeness, we also used Norton’s algorithm (Eqns. 2, 3, and 4) to reconstruct
images of the Shepp-Logan phantom from data that are acquired with the short-scan and
full-scan configurations in which the radius of the source-receiver trajectory is 3ry. Images
reconstructed from short-scan and full-scan data are shown in the first and second rows in
Fig. 11, respectively. Noiseless images ‘are shown in the first columns in Fig. 11, whereas
noisy images shown in the second, third, and fourth columns in Fig. 11 were reconstructed
from data containing Gaussian noise with standard deviations of 1, 2, and 5, respectively.
As expected, images reconstructed from short-scan data contain significant artifacts. Also,
images reconstructed from full-scan data contain slight ringing artifacts and have poorer
resolution as compared to those obtained with the EM algorithm, suggesting that Norton’s
algorithm is susceptible to numerical errors.

5 Discussion

In this work, we used a potato-peeler perspective to investigate data symmetries in reflectiv-
ity tomography. Based upon the identified data symmetries, we showed heuristically that
an object function with a compact support can be specified by knowledge of half of the full-
scan data. This observation has led to the development of reduced-scan configurations such
as short-scan and w-scheme configurations in reflectivity tomography. Reduced-scan reflec-
tivity tomography not only poses a theoretically interesting reconstruction problem, but
also has practical implications. For example, in certain situations, it may not be experimen-
~ tally possible to collect data over a full angular range of 2, thus demanding reduced-scans.
A unique feature of the potato-peeler perspective is that it provides informative insights
into a complex mathematical problem in a conceptually straightforward manner. We also
employed the results of microlocal analysis to analyze theoretically the stability of recon-
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structing image boundaries from reduced-scan data, and we derived theoretically sufficient
conditions on reduced-scan configurations which acquire data for accurate reconstruction
of an object function.

As predicted by microlocal analysis, certain image boundaries cannot stably be recon-
structed from short-scan or w-scheme data in reflectivity tomography. Although artifacts
due to the unstable boundary reconstruction can be observed, such artifacts appear gen-
erally weak and become difficult to discern when the data contain noise and/or when the
radius R of the source-receiver trajectory becomes large. For example, for R = 3rg, such
artifacts were virtually undetectable for the ellipse and Shepp-Logan phantoms studied.
This is significant because the ellipse phantom containing the square structures was specif-
ically designed to reveal the possible instabilities of boundary reconstruction in short-scan
reflectivity tomography predicted by the microlocal analysis, and because the Shepp-Logan
phantom is sufficiently complex to represent many real-world reflecting objects that may
be of practical interest. Conceptually, these results might be explained by the fact that
the data are becoming more “Radon-like” as the radius R of the source-receiver trajectory
increases. (In the limit R — oo, Eqn. 1 reduces to the Radon transform, and an exact
image can be reconstructed from short-scan or 7-scheme data.) Our numerical results have
important practical implications: For many reflecting objects possessing boundaries and
for scanning configurations with different R that may arise in realistic experiments, images
reconstructed from reduced-scan data, such as the short-scan and w-scheme data, can have
a numerical accuracy similar to that of full-scan images. The numerical results also ver-
ified the sufficient condition that all image boundaries can stably be reconstructed from
reduced-scan data taken over an angular range of 37/2. For smooth object functions, our
numerical results suggest that images can be reconstructed accurately from short-scan and
m-scheme data.

We are currently developing a mathematical formulation for the potato-peeler perspec-
tive for reflectivity tomography and will report such results elsewhere. Thé perspectives
and methods utilized in this work can readily be extended to investigation of, e.g., recon-
struction problems in reflectivity tomography for which the source-receiver trajectory is
not a circular curve, but is a general curve satisfying certain conditions. This work is also
relevant to generalized Radon transforms that integrate over certain (non-circular) curves
and to exterior reconstruction problems. Investigation of these topics is curreﬁtly under
way. '
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Appendix A: Stability of Reconstructing Image Bound-
aries from Reduced-Scan Data

Microlocal analysis [14,18,19] can be employed for examining whether image boundaries
can stably be reconstructed from reduced-scan data in reflectivity tomography. Without
loss of generality, we consider boundary reconstruction from short-scan data acquired with
the configurations shown in Fig. 12, where the source-receiver trajectories are semi-circles
of radii R residing in the lower half plane. According to the microlocal analysis [10], a
boundary can stably be reconstructed if and only if the normal vector at that boundary
intersects the source-receiver trajectory [17]. For example, as shown in Fig. 12a, assume
R = R, and consider the three boundaries labeled Py, P, and P;. The normal vector
at boundary P, intersects the source-receiver trajectory, and therefore boundary P, can
stably be reconstructed. However, because the normal vectors at boundaries P, and P;
do not intersect the trajectory with a radius R;, boundaries P, and P; cannot stably
be reconstructed. If the radius of the source-receiver trajectory is increased to be large
enough, the normal vectors that are not parallel to the z-axis will eventually intersect the
trajectory, and the number of boundaries that can stably be reconstructed will increase. For
example, as shown in Fig. 12, when R = R,, boundary P, can now be reconstructed stably.
Therefore, when one reconstructs an image from short-scan data in reflectivity tomography,
the manifestation of artifacts due to boundaries that cannot be stably reconstructed would
depend on the magnitude of R. Notice that the normal vector at boundary P; is parallel
to the z-axis, and will therefore never intersect the source-receiver trajectory with a finite
radius in the lower half plane. Therefore, one can conclude that certain boundaries cannot,
in theory, be reconstructed stably from short-scan data in reflectivity tomography. Similar
conclusions can be made for the stability of boundary reconstruction in w-scheme reflectivity
tomography. However, as the results in numerical studies indicated, for object functions
with complicated boundaries and for source-receiver trajectories with radii R of practical
interest, artifacts due to unstable reconstruction of the boundaries from short-scan and
m-scheme data do not appear to be prominent.

Based upon the microlocal analysis, one can derive theoretically sufficient conditions
for stable reconstruction of image boundaries. In the limiting case, i.e., R — 0o, the data
function (see Eqn. 1) in reflectivity tomography reduces to the Radon transform, and
normal vectors of any boundaries will intersect the source-receiver trajectory at infinity.
Therefore, all of the boundaries can stably be reconstructed from short-scan or 7-scheme
Radon data. Also, considering the scanning configuration in the fourth panel of Fig. 5,
the source-receiver trajectory of radius R in this configuration covers an angular interval of
37/2. In this case, it can readily be verified that any normal vectors on image boundaries
intersect the source-recéiver trajectory. Therefore, one can obtain a sufficient condition
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that all of the boundaries can stably be reconstructed from data acquired over a reduced
angular interval that spans 3w/2. Furthermore, one can design a scanning configuration
such that all of the boundaries within an object function can stably be reconstructed from,
e.g., the short-scan data. As shown in Fig. 12b, for the entire object that is placed in
the lower half of the plane and is enclosed by the source-receiver trajectory, all boundaries
in the object can stably be reconstructed because their normal vectors, in this situation,
intersect the source-receiver trajectory.
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Figure Captions

1. Schematic illustration of the scanning geometry in reflectivity tomography.

2. Schematic illustration of the measurements at the edge of an object function in reflec-
tivity tomography (left panel). Points A, B, and C in the object function contribute to the
measured data on curves with the same labels in the data space (right panel).

3. Numerical phantoms used in simulation studies. The phantom in the left panel, which is
referred to as the Gaussian phantom, is comprised of three Gaussian functions, representing
a smooth object function. The phantoms in the middle and right panels, which contain
boundaries (i.e., discontinuities), are referred to as the ellipse and Shepp-Logan phantoms,
respectively, and are used to investigate boundary-reconstruction stability from short-scan
and 7-scheme data in reflectivity tomography.

4. Profiles through difference images at £ = 64 (left) and y = 44 (right) obtained from
data acquired over [0, 7) (solid), [0,37/4) (dotted), and [0,7/2) (dashed).

5. Scanning configurations that acquire data over angular intervals [0, 7/2) (left), [, 27)
(second from left), [r/3, 27 /3]U[r, 47 /3|U[57/3, 27] (middle), [0, 37/2) (second from right),
and [0, 27) (right). The configurations in the second, third, and fifth panels are also referred
to as the short-scan, m-scheme, and full-scan configurations, respectively.

6. Images reconstructed from noiseless and noisy data acquired over [0, 7/2) for the ellipse
and Shepp-Logan phantoms. The radii of the source-receiver trajectory were set to ry in (a)
and (c), and 37y in (b) and (d). Images in the first column were reconstructed from noiseless
data, and images in the second, third, and fourth columns were reconstructed from data
containing three different levels of Gaussian noise. All of these images contain significant
distortions, suggesting that images cannot accurately be reconstructed from data acquired
over angular intervals less than 7. "

7. Images reconstructed for the ellipse phantom from data acquired over angular intervals
[x,27) (1st row), [7/3,27/3] U 7,47 /3] U [57/3,2x] (2nd row), [0,37/2) (3rd row), and
[0,27) (4th row). The radius of the source-receiver trajectory is ro. Images in the first
column were reconstructed from noiseless data, and images in the second, third, and fourth
columns were reconstructed from data containing three different levels of Gaussian noise.

8. Images reconstructed for the ellipse phantom from data acquired over angular intervals
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[x,27) (1st row), [n/3,27/3] U [r,4n/3] U [57/3,27] (2nd row), [0,37/2) (3rd row), and
[0,27) (4th row). The radius of the source-receiver trajectory is 3rp. Images in the first
column were reconstructed from noiseless data, and images in the second, third, and fourth
- columns were reconstructed from data containing three different levels of Gaussian noise.

9. Images reconstructed for the Shepp-Logan phantom from data acquired over angular
intervals [, 27) (1st row), [7/3, 27 /3]U[r, 47 /3] U[57 /3, 27| (2nd row), [0, 37 /2) (3rd row),
and [0, 27) (4th row). The radius of the source-receiver trajectory is ro. Images-in the first
- column were reconstructed from noiseless data, and images in the second, third, and fourth
columns were reconstructed from data containing three different levels of Gaussian noise.

10. Images reconstructed for the Shepp-Logan phantom from data acquired over angular
intervals [, 27) (1st row), [7/3,27/3]U[r, 4% /3] U[57 /3, 27} (2nd row), [0, 37/2) (3rd row),
and [0,27) (4th row). The radius of the source-receiver trajectory is 3ry. Images in the
first column were reconstructed from noiseless data, and images in the second, third, and
fourth columns were reconstructed from data containing three different levels of Gaussian
noise.

11. Images reconstructed by use of Norton’s algorithm from short-scan data (1st row)
and full-scan data (2nd row) that were acquired with a circular source-trajectory of radius
R = 3r,. Images in the first column were reconstructed from noiseless data, and images in
the second, third, fourth columns were reconstructed from data containing three different
levels of Gaussian noise. ‘

12. Short-scan configurations and boundaries in the objects. (a) Some of the boundaries

such as P, and P; reside in the upper half plane; and (b) the entire object resides in the
lower half plane and is enclosed by the source-receiver trajectory.
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